

Tamil Nadu Newsprint and Papers Limited

(A Government of Tamil Nadu Enterprise) Kagithapuram - 639 136, Pugalur Taluk, Karur Dist. Tamil Nadu, India. Phone: (0091) 04324-277001 to 10 - (10 Lines) Cell : 94860 41341 to 41343

ENV/112/24

May 21, 2024

Addl. Principal Chief Conservator of Forests (C) Ministry of Env., Forest and Climate Change Regional Office (SEZ), 1st and IInd Floor, Handloom Export Promotion Council, 34, Cathedral Garden Road, Nungambakkam, Chennai - 34

Dear Sir,

- Sub: Submission of six monthly compliance reports for the conditions stipulated in the Environmental clearances (EC)-Reg.
- Ref: (i) MoEF EC file No. J-11011/710/2007-IA,II (I) dt. 11.02.2013
 - (ii) MoEF EC file No.J-11011/710/2007-IA II (I) dt. 11.12.2008
 - (iii) MoEF EC file No.J-11011/375/2005-IA-II (I) dt. 10.04.2006

This refers to the ECs issued for TNPL for the for the implementation of Deinking Pulp plant (DIP) & Upgradation of the Captive co-generation (UCCG), Mill Expansion Plant (MEP) and Mill Development Plan (MDP) vide reference ref (i), ref (ii) and ref (iii) respectively.

In compliance to the general condition stipulated in the respective ECs, the status of six monthly compliance report against the special and general conditions stipulated in the ECs for the period between 01/10/2023 and 31/03/2024 is submitted as detailed below:

SI No	Project file No./ Date	Name of the project	Status of compliance on EC conditions submission Parivesh portal.	Remarks
01	J-11011/710/2007-IA,II(I) dt. 11.02.2013	Installation of deinking plant and upgradation of captive co- generation plant	Compliance to the conditions along with supporting documents as above were uploaded in Parivesh portal on 21/05/2024	A copy of the EC compliance report along with relevant annexure downloaded from the Parivesh portal is submitted along with letter.

TNPL Corporate Office

67, Mount Road, Guindy, Chennai, TN, India - 600 032. Phone: 044-22354415,16,18 22301094 to 97 E - mail: response@tnpl.co.in, Web: www.tnpl.com Corporate ID No : L 22121 TN 1979 PL C 007799 TNPL Unit - II - Board Plant Kagitha Nagar, Mondipatti, K.Periyapatti Post, Manapparai Taluk, Tiruchirappalli District, Tamil Nadu, India - 621 306. Phone: 04332-261600 Cell: 94890 12793

TNPL - MAKER OF BAGASSE BASED ECO - FRIENDLY PAPER

TAMIL NADU NEWSPRINT AND PAPERS LIMITED

SI No	Project file No./ Date	Name of the project	Status of compliance on EC conditions submission Parivesh portal.	Remarks
02	J-11011/710/2007-IA II (I) dt. 11.12.2008	The expansion of Pulp and Paper Mill 2,45,000 to 4,00,000 TPA by installation of new Paper Machine 1,55,000 TPA and balancing of Hard wood and bagasse Pulp Mill Pulp Mill 300 to 330 and 500 to 550 TPD.	Compliance to the conditions along with supporting documents as above were uploaded in Parivesh portal on 21/05/2024.	A copy of the EC compliance report along with relevant annexure downloaded from the Parivesh portal is submitted along with letter
03	J-11011/375/2005-IA-II (I) dt. 10.04.2006	Expansion of Paper Production from 2,05,000 MTPA to 2,45,000 MTPA and production of 45,000 MTPA market pulp at TNPL, Kagithapuram, Karur District	Compliance to the conditions along with supporting documents as above were uploaded in Parivesh portal on 21/05/2024.	A copy of the EC compliance report along with relevant annexure downloaded from the Parivesh portal is submitted along with letter.

This is for your kind information and records.

Thanking You.

Yours faithfully, For Tamilnadu Newsprint and Papers Limited,

Shan= N 2115124

Deputy General Manager (R&D)

- CC:
- The Member Secretary, SEIAA, Saidapet, Chennai 600 005.
- (2) The Member Secretary, TNPCB, Guindy, Chennai.
- (3) The Regional Directorate, CPCB, Chennai.
- (4) The Joint Chief Environmental Engineer, TNPCB, Salem.
- (5) The District Environmental Engineer, TNPCB, Karur

Home Page

Your (Environment Clearance) application	has been Submitted with following details
Proposal No	IA/TN/IND/6221/2007
Compliance ID	27850560
Compliance Number(For Tracking)	EC/M/COMPLIANCE/27850560/2024
Reporting Year	2024
Reporting Period	01 Jun(01 Oct - 31 Mar)
Submission Date	21-05-2024
IRO Name	V Geroge Jenner
IRO Email	tr025@ifs.nic.in
State	TAMIL NADU
IRO Office Address	Integrated Regional Offices, Chennai
Note:- SMS and E-Mail has been sent to V Geroge Jenner, TAMIL NADU with Notification to Project Proponent.	

	01 Jun(01	Compliance Report 2024 Oct - 31 Mar) wledgment	
Proposal Name			einked Pulp Line (DPL) and o-generation Plant (CCP) at
Name of Entity / Corporat	e Office	Tamil Nadu Newsprint an	d Papers Limited
Village(s)		N/A	
District		KARUR	
Proposal No.	IA/TN/IND/6221/2007	Category	Industrial Projects - 1
Plot / Survey / Khasra No.	N/A	Sub-District	N/A
State	TAMIL NADU	Entity's PAN	NA
MoEF File No.	J-11011/710/2007- IA.II(I)11/02/2013	Entity name as per PAN	NA

Compliance Reporting Details

Reporting Year	2024
Remarks (if any)	EC COMPLIANCE STATUS REPORT PERTAINING TO DIP AND UPGRADATION OF CAPTIVE CO- GENERATION PLANT AND FOR THE PERIOD ENDING 30/09/2023
Reporting Period	01 Jun(01 Oct - 31 Mar)

Details of Production and Project Area

Name of Entity / Corporate Office	Tamil Nadu Newsprint and Papers Limited	
	Project Area as per EC G	ranted Annual Project Area in Possession
Private	151.76	2.43
Revenue Land	0	0
Forest	0	0
Others	0	0
Total	151.76	2.43

Production Capacity

Name of Entity /

Sr. no	Product Name	units	Valid Upto	Capacity	Production last year	Capacity as per CTO
1	Writing and Pring Paper	Tons per Annum (TPA)	31/03/2027	480000	422742	480000

Conditions

Specific Conditions

Sr.No.	Condition Type	Condition Details	
1	Corporate Environmental Responsibility	xviii. At least 5% of the total cost of the project s earmarked towards the Enterprise Social Commitment Public Hearing issues and item-wise details along with action plan shall be prepared and submitted to the Mini Regional Office at Bangalore. Implementation of such be ensured accordingly in a time bound manner.	based on time bound istry's
TNPL se		5% of the project cost of Rs.15.5 Cr. The total cost spent 2.43 Crores. Details are submitted as Annexure XIV.	Date: 20/05/2024
2	Statutory compliance	i. Compliance to all the specific and general Condition for the existing plant by the Central/State Government ensured and regular reports submitted to the Ministry a Office at Bangalore.	shall be
The requ	ubmission: Complied uisite compliance reports are being s pliance reports through email as we	submitted to relevant authorities as part of six monthly ll as hard copies.	Date: 20/05/2024
3	AIR QUALITY MONITORING AND PRESERVATION	iii. Data on ambient air, stack and fugitive emissions regularly submitted online to Ministry's Regional offic SPCB and CPCB as well as hard copy once in six mon data on RSPM, SO2 and NOx outside the premises at t place for the general public.	e at Bangalor ths and displa
The reports t	hrough email and hard copies. Real	authorities along with six monthly EC compliance -time value display available near the main gate.	Date: 20/05/2024
Samma	ry of Ambient and Stack CEMS Dat	a submitted as Annexure II.	
	y of Ambient and Stack CEMS Dat Statutory compliance	iv. In case of treatment process disturbances/failure of control equipment adopted by the unit, the respective u shut down and shall not be restarted until the control m rectified to achieve the desired efficiency.	nit shall be
4 PPs S TNPL h	Statutory compliance ubmission: Complied as a dedicated captive power plant.	iv. In case of treatment process disturbances/failure of control equipment adopted by the unit, the respective us shut down and shall not be restarted until the control m	nit shall be

conce accred	ct respectively. TNPCB and NABL acc cting Effluent water quality analysis on rned authorities along with respective E lited & MoEFCC recognized Third Part	g review period are 32,134 M3/day and 28 M3/T of redited & MoEFCC recognized Third Party Lab is ce in month and relevant reports are submitted to C compliance reports. TNPCB and Latest NABL y Lab effluent water analysis report ROA is ed effluent is well within the TNPCB norms.	Date: 20/05/2024
6	WATER QUALITY MONITORING AND PRESERVATION	vi. Adequate number of influent and effluent quali- stations shall be set up in consultation with the State H Control Board and regular monitoring shall be carried relevant parameters to maintain the effluent treatment Online flow meter, pH meter, conductivity meter etc. installed. The report shall be submitted to Ministry's H at Bangalore SPCB and CPCB.	Pollution l out for all t efficiency. shall be
Adequ TNPC install	B, NABL accredited & MoEFCC recog	o monitor Treated effluent & Sewage quality through gnized Third Party Lab & online water quality station ne Water Quality Watch (WQW) data is attached as	Date: 20/05/2024
7	WATER QUALITY MONITORING AND PRESERVATION	vii. Ground water quality study in and around the p be conducted and report submitted to Ministry's Regi Bangalore, SPCB and CPCB.	
TNPC qualit along	y analysis once in three months and rele	ecognized Third Party Lab is conducting groundwater evant reports are submitted to concerned authorities TNPCB and Latest NABL accredited & MoEFCC alysis report submitted as Annexure V.	Date: 20/05/2024
8	WATER QUALITY	viii. The company shall install Oxygen Delignification	
0	MONITORING AND PRESERVATION	and shall maintain AOX below 1kg/tonne of paper pro	· · · ·
PPs ODL respec recogi	PRESERVATION Submission: Complied were installed in Hard wood fiber line a tively. AOX and TOC are measured on	and shall maintain AOX below 1kg/tonne of paper pro- nd chemical bagasse plant in 2008 and 2010 ce a month through NABL accredited & MoEFCC aries from 0.04 to 0.11 Kg/T against 1 kg/ton of paper	oduction.
PPs ODL respec recogi produ	PRESERVATION Submission: Complied were installed in Hard wood fiber line a stively. AOX and TOC are measured on nized Third Party Lab. An AoX value va	and shall maintain AOX below 1kg/tonne of paper pro- nd chemical bagasse plant in 2008 and 2010 ce a month through NABL accredited & MoEFCC aries from 0.04 to 0.11 Kg/T against 1 kg/ton of paper	Oduction. Date: 20/05/2024
PPs ODL respec recogi produ 9 9 PPs ECF v	PRESERVATION Submission: Complied were installed in Hard wood fiber line a trively. AOX and TOC are measured on nized Third Party Lab. An AoX value va ction. Copy of AOX report submitted as WASTE MANAGEMENT Submission: Complied	and shall maintain AOX below 1kg/tonne of paper pro- nd chemical bagasse plant in 2008 and 2010 ce a month through NABL accredited & MoEFCC aries from 0.04 to 0.11 Kg/T against 1 kg/ton of paper s Annexure VI. ix. ECF technology shall be used and lime kiln sha to mange lime sludge.	Date: 20/05/2024 all be installed Date:
PPs ODL respec recogn produce 9 PPs ECF v respec	PRESERVATION Submission: Complied were installed in Hard wood fiber line a stively. AOX and TOC are measured on nized Third Party Lab. An AoX value va ction. Copy of AOX report submitted as WASTE MANAGEMENT Submission: Complied vas installed in 2008 and is in operation	and shall maintain AOX below 1kg/tonne of paper pro- nd chemical bagasse plant in 2008 and 2010 ce a month through NABL accredited & MoEFCC aries from 0.04 to 0.11 Kg/T against 1 kg/ton of paper s Annexure VI. ix. ECF technology shall be used and lime kiln sha to mange lime sludge.	oduction. Date: 20/05/2024 all be installed Date: 20/05/2024 vater ground water
ODL respective respect	PRESERVATION Submission: Complied were installed in Hard wood fiber line a stively. AOX and TOC are measured on nized Third Party Lab. An AoX value vaction. Copy of AOX report submitted as WASTE MANAGEMENT Submission: Complied vas installed in 2008 and is in operation trively and are under continuous operation WATER QUALITY MONITORING AND PRESERVATION Submission: Complied is periodically submitting its updated c	and shall maintain AOX below 1kg/tonne of paper produces a month through NABL accredited & MoEFCC aries from 0.04 to 0.11 Kg/T against 1 kg/ton of paper s Annexure VI. ix. ECF technology shall be used and lime kiln shato mange lime sludge. . Lime Kilns I & II were installed in 1996 and 2008 on. x. The Company shall submit the comprehensive w management plan along with monitoring plan for the quality and the level, within three months from date or letter. comprehensive water management plan along with s. A copy of the latest comprehensive water	oduction. Date: 20/05/2024 all be installed Date: 20/05/2024 vater ground water

Fly ash manufa		d balance, if any is being sent to fly ash bricks s are submitted to TNPCB authorities. The latest fly re VIII	Date: 20/05/2024
12	WASTE MANAGEMENT	xii. The project authority shall dispose to hazardous the provision of Hazardous Wastes (Management, Har Transboundary Movement) Rules, 2008.	
TNPCI validity	/ 31/03/2027 for Main Plant and No 22	ion No 22HFC42010886 dated 29/08/2022 with 2HFC42552706 dated 04/11/2022 with validity ous Waste disposal is done as per authorization.	Date: 20/05/2024
13	GREENBELT	xiii.The company shall develop green belt in 33% of as per the CPCB guidelines to mitigate the effect of fu- emissions.	
The un the Caj		en belt with 38.42% for the paper plant and 42.37% for n Belt report for the current review period is submitted	Date: 20/05/2024
14	Human Health Environment	xiv.Occupational health surveillance of the workers on a regular basis and records maintained as per the Fa	
OHC is parame		ure and functioning four resident doctors with requisite rds as per Factory Act. A Copy of the OHC report for exure X.	Date: 20/05/2024
15	Risk Mitigation and Disaster Management	xv. The Company shall make the arrangement for propossible fire hazardous during manufacturing process handling.	
Necess manufa		rds the protection of possible fire hazardous during the The updated fire protection facilities available in TNPL	Date: 20/05/2024
16	Corporate Environmental Responsibility	xvi.All the recommendations made in the Charter on Responsibility for Environment Protection (CREP) for paper sector shall be strictly implemented.	1
CREP	Submission: Complied recommendations are being implement is submitted as Annexure XII	red and a copy of the report for the current review	Date: 20/05/2024
CREP	recommendations are being implement	xvii. All the commitments made to the public durin Public Consultation meeting held on 18th May, 2012 s satisfactorily implemented and a separate budget for ir the same should be allocated and information submitte Ministry's Regional Office at Bangalore.	20/05/2024 ng Hearing / hall be nplementing

18	Human Health Environment	xix.Provision shall be made for the housing of constr within the site with all necessary infrastructure and fac fuel for cooking, mobile toilets, mobile STP, Safe drint medical health care, crèche etc. The housing may be in temporary structures to be removed after the completion project.	ilities such as king water, the form of
	Ibmission: Complied d during the project execution period	.Not applicable -during the review period	Date: 21/05/2024
19	AIR QUALITY MONITORING AND PRESERVATION	ii.The project authority shall install multi cyclones, w with the boilers to achieve the particulate emission belo mg/Nm3. The emissions from chemical recovery section controlled through primary and secondary venturi scrut	ow 50 on shall be
TNPL hat the boile section a same is o TNPCB Third Pa	r particulate emission. The stipulate re achieved by operating ESPs effici evidenced from the Continues Emissi & Periodical TNPCB Stack Survey F	c (ESP) in the Chemical Recovery Section to mitigate the norms for the boilers in the chemical recovery ently with appropriate periodical maintenance. The on Monitoring Data – Connected with care air center of ROA & NABL accredited & MoEFCC recognized NABL accredited & MoEFCC recognized Third Party cure I.	Date: 21/05/2024
neral C Sr.No.	onditions	Condition Details	
1	Condition Type Statutory compliance	i.The project authorities must strictly adhere to the st by the Tamil Nadu Pollution Control Board and the Sta Government.	
Strictly of	bmission: Complied complying with TNPCB conditions. T e to time.	The consent to operate for facility is being renewed	Date: 21/05/2024
2	Statutory compliance	ii. No further expansion or modifications in the pl carried our without prior approval of the Ministry of Er and Forest.	
TNPCB		hancement of production from 4.0 to 4.8 Lakh MT/A b. The CTO obtained from TNPCB on 01/02/2024 with	Date: 21/05/2024
a validity			
a validity	AIR QUALITY MONITORING AND PRESERVATION	iii. At least four ambient air quality monitoring stat established in the downward direction as well as where ground level concentration of PM10, SO2 and NOx are consultation with the SPCB. Data on ambient air qualit emission shall be regularly submitted to this Ministry i Regional Office at Bangalore and the SPCB/CPCB on months.	maximum anticipated i y and stack ncluding its

	ure XV.		
4	AIR QUALITY MONITORING AND PRESERVATION	 iv. Industrial wastewater shall be properly collected to conform to the standards prescribed under GSR 422 May, 1993 and 31st December, 1993 or as amended fro time. The treated wastewater shall be utilized for plant 	(E) dated 19t om time to
The ur		ertiary Effluent Treatment facilities to ensure its quality treated effluent is utilized for "On land irrigation	Date: 21/05/2024
5	Noise Monitoring & Prevention	v. The overall noise levels in and around the plant kept well within the standards (85 dBA) by providing a measures including acoustic hoods, silencers, enclosure sources of noise generation. The ambient noise levels s to the standards prescribed under EPA Rules, 1989 viz (daytime) and 70 dBA (nighttime).	noise control es etc. on all should confor
TNPL accred TNPC	ited & MoEFCC recognized Third Part	rres. The Noise survey report by TNPCB and NABL y Lab reveals that values are with prescribed norms. FCC recognized Third Party Lab Noise survey report	Date: 21/05/2024
6	Human Health Environment	vi. Occupational health surveillance of the workers on a regular basis and records maintained as per the Fa	
OHC i param		ure and functioning four resident doctors with requisite rds as per Factory Act. A Copy of the OHC report for exure X.	Date: 21/05/2024
OHC i parame the cur	s provided with the required infrastruct edical staff and maintaining health reco	rds as per Factory Act. A Copy of the OHC report for	21/05/2024 resting
OHC i parame the cur 7 PPs TNPL about 4	s provided with the required infrastructured in the required infrastructured is staff and maintaining health reconstruction review period is submitted as Annotation Statutory compliance Submission: Complied so far, has implemented rainwater harve	rds as per Factory Act. A Copy of the OHC report for exure X. vii. The Company shall also develop rain water harv structures to harvest the rain water for utilization in the besides recharging the ground water table.	21/05/2024 resting e lean season Date:
OHC i parame the cur 7 PPs TNPL about 4 harves	s provided with the required infrastructive dical staff and maintaining health reconstructive period is submitted as Anno Statutory compliance Submission: Complied so far, has implemented rainwater harv 4.52 Lakh Sq.meter area through 627 rainwater and submission for the submission of the submission	rds as per Factory Act. A Copy of the OHC report for exure X. vii. The Company shall also develop rain water harv structures to harvest the rain water for utilization in the besides recharging the ground water table.	21/05/2024 resting e lean season Date: 21/05/2024 the ommended in take socio- llages like
OHC i parame the cur 7 PPs TNPL about 4 harves 8 PPs TNPL	s provided with the required infrastructure dical staff and maintaining health reconstruct review period is submitted as Anno Statutory compliance Submission: Complied so far, has implemented rainwater harv 4.52 Lakh Sq.meter area through 627 rating details are submitted as Annexure 2 Corporate Environmental Responsibility Submission: Complied so far spent Rs. 37.06 Crores against 56	rds as per Factory Act. A Copy of the OHC report for exure X. vii. The Company shall also develop rain water harv structures to harvest the rain water for utilization in the besides recharging the ground water table. esting facilities to recharge ground after covering inwater pits, 5 ponds, and five reservoirs. Rainwater XVII. viii.The project proponent shall also comply with all environmental protection measures and safeguards rece the EIA/EMP report. Further, the company must under economic development activities in the surrounding vii community development programmes, educational pro	21/05/2024 resting e lean season Date: 21/05/2024 the ommended in take socio- llages like

TNPL		he implementation of environment pollution control TNPCB. Details are submitted as Annexure XIV.	Date: 21/05/2024
10	Statutory compliance	x. A copy of clearance letter shall be sent by the pro concerned Panchayat, Zlia Parishad/Municipal Corpor local Body and the local NGO, if any, from whom suggestions/representations, if any, were received whi the proposal. The clearance letter shall also be put on the company by the proponent	ration, Urban ile processing
A copy	Submission: Complied of the clearance letter was submi f the submission is enclosed as Ar	tted to Kagithapuram town panchayat on 21/03/2013. A nexure XVIII.	Date: 21/05/2024
11	Statutory compliance	xi. The project proponent shall upload the status of the stipulated environment clearance conditions, inclu- monitored data on their website and shall update the s- periodically. It shall simultaneously be sent to the Reg the MOEF at Bangalore. The respective Zonal Office the SPCB. The criteria pollutant levels namely; PM10 (ambient levels as well as stack emissions) for critical parameters, indicated for the projects shall be mentore at a convenient location near the main gate of the com- public domain.	iding results of ame gional Office o of CPCB and b, SO2, NOx sectoral ed and displaye
EC cor	are submitted to respective author	in 6 months on the www.tnpl.com website. Hard and soft ities once in 6 months. Real-time value is available near the	Date: 21/05/2024
12	Statutory compliance	xii. The project proponent shall also submit six more the status of the compliance of the stipulated environer conditions including results of monitored data (both in well as by e-mail)to the Regional Office of MOEF, the Zonal Office of CPCB and the SPCB. The Regional Officient Ministry at Bangalore / CPCB/SPCB shall monitor the conditions.	nental n hard copies a e respective Office of this
PPs St Hard as being s	Submission: Complied nd soft copies (email) of periodica	the status of the compliance of the stipulated environr conditions including results of monitored data (both in well as by e-mail)to the Regional Office of MOEF, th Zonal Office of CPCB and the SPCB. The Regional Officient Ministry at Bangalore / CPCB/SPCB shall monitor the	nental n hard copies a e respective Office of this e stipulated Date:
Hard an being s	Submission: Complied nd soft copies (email) of periodica ubmitted to respective authorities	the status of the compliance of the stipulated environr conditions including results of monitored data (both in well as by e-mail)to the Regional Office of MOEF, th Zonal Office of CPCB and the SPCB. The Regional O Ministry at Bangalore / CPCB/SPCB shall monitor the conditions.	nental n hard copies a e respective Office of this e stipulated Date: 21/05/2024 year ending l by the project pard as 1986, as te of the onmental

			Project proponent shall inform the public that	
14	Statutory compliance	copies of also be se http:/envf date of iss newspape be in the	accorded environmental clearance by the Min the clearance letter are available with the SPG een at Website of the Ministry of Environmen for.nic.in. this shall be advertised within seven sue of the in the clearance letter, at least in tw ers that are widely circulated in the region of v vernacular language of the locality concerned should be forwarded to the Regional office at	CB and may t and Forests a n days from the to local which one shal and a copy of
The adv	ubmission: Complied ertisement was made in Newspap ed to MoEF & CC on 4th March 2	ers on 27/02/20 2013. Details are	13 and a copy of the advertisement was e submitted as attached as Annexure XXI.	Date: 21/05/2024
15	Statutory compliance	the Minis project by	ject authorities shall inform the Regional Off try, the date of financial closure and final app the concerned authorities and the date of con- clopment work.	proval of the
	ubmission: Complied P and up gradation of Captive Po	wer Plant work	were started and completed during 2013	Date: 21/05/2024
		Visit R	emarks	
ast Site	Visit Report Date:		21/04/2022	
dditiona	al Remarks:			

Home Page

Your (Environment Clearance) application	has been Submitted with following details
Proposal No	IA/TN/IND/4608/2005
Compliance ID	69703861
Compliance Number(For Tracking)	EC/M/COMPLIANCE/69703861/2024
Reporting Year	2024
Reporting Period	01 Jun(01 Oct - 31 Mar)
Submission Date	21-05-2024
IRO Name	V Geroge Jenner
IRO Email	tr025@ifs.nic.in
State	TAMIL NADU
IRO Office Address	Integrated Regional Offices, Chennai
Note:- SMS and E-Mail has been sent to V Geroge Jenner, TAMIL NADU with Notification to Project Proponent.	

	01 Jun(01	Compliance Report 2024 Oct - 31 Mar) wledgment	
Proposal Name		TPA) by installation of ne TPA) and balancing of Ha	per Mill (2,45,000 to 4,00,000 w Paper Machine (1,55,000 and Wood Pulp Mill (300 to 330 Pulp Mill (500 to 550 TPD) at rur District.
Name of Entity / Corporat	e Office	Tamil Nadu Newsprint and	d Papers Limited
Village(s)		N/A	
District		KARUR	
Proposal No.	IA/TN/IND/4608/2005	Category	Industrial Projects - 1
Plot / Survey / Khasra No.	N/A	Sub-District	N/A
State	TAMIL NADU	Entity's PAN	NA
MoEF File No.	J-11011/710/2007-IA- II(I)	Entity name as per PAN	NA

Compliance Reporting Details

Reporting Year	2024
Remarks (if any)	EC compliance status report pertaining to installation of New Paper machine(1,55,000 TPA), Hard wood Pulp Mill (300 to 330 TPA) and Bagasse based Pulp Mill (500 to 550 TPD) and for the period ending 30/09/2023.
Reporting Period	01 Jun(01 Oct - 31 Mar)

Details of Production and Project Area

Name of Entity / Corporate Office	Nadu Newsprint and Papers Limited	
	Project Area as per EC Granted	Annual Project Area in Possession
Private	151.76	1.62
Revenue Land	0	0
Forest	0	0
Others	0	0
Total	151.76	1.62

Production Capacity

Sr. no	Product Name	units	Valid Upto	Capacity	Production last year	Capacity as per CTO
1	Writing and Pring Paper	Tons per Annum (TPA)	31/03/2027	480000	422742	480000

Conditions

Specific Conditions

	Condition Type	Condition Details	
1	Statutory compliance	i. As proposed, Elemental Chlorine Free (ECF) bleac technology shall be adopted in hardwood pulp mill, ba and paper machine.	
Implements Implemented Impleme		logy was adopted in the year 2008 for both hardwood currently under operation. ECF bleaching technology	Date: 21/05/2024
2	AIR QUALITY MONITORING AND PRESERVATION	ii. Continuous stack monitoring facilities for all the s Sufficient air pollution control devices viz. Electrostati (ESP) and bag filters etc. shall be provided to control g emissions below 100 mg/Nm ³ . Monitoring of H2S and along with other parameters shall be ensured and repor Ministry's Regional Office at Bangalore, TNPCB and G regularly. The gaseous emissions (SPM, SO2, NOX, H Mercaptan) from various process units shall conform to prescribed from time to time. The State Board may spe stringent standards for the relevant parameters keeping nature of the industry, its size and location. At no time level shall go beyond the prescribed standards. In the e of any pollution control systems(s) adopted by the unit unit should not be restarted until the control measures a achieve the desired efficiency.	te precipitator gaseous Mercaptan et submitted to CPCB 22S and to the standard control for the fin view the fin view the fin view the fin view the fin view the fin the emission went of failur fin the respective
ppc C	ubmission: Complied		
TNPL h the boild are bein Continu Moreov NABL a Annexu MoEFC from the	as installed Electro Static Precipitator er particulate emission. The stipulated g achieved by operating the ESPs effe es Emission Monitoring Analyzer Da er the same is evident from the period accredited & MoEFCC recognized Th accredited & MoEFCC recognized Th re I. H2S and Mercaptans are monitor C recognized Third Party Lab. TNPL	(ESP) in the Chemical Recovery Section to mitigate norms for the boilers in the chemical recovery section ectively and efficiently. The same is evidenced by the ta – Connected with Care Air Centre of TNPCB. lical-biannual TNPCB Stack Survey ROA, monthly ird Party Lab analysis data. The latest TNPCB and ird Party Lab Stack survey ROA is submitted as red once a month through NABL accredited & has a dedicated captive power plant. A separate feeder ution control equipment systems to ensure continuous	Date: 21/05/2024
TNPL h the boild are bein Continu Moreov NABL a Annexu MoEFC from the	as installed Electro Static Precipitator er particulate emission. The stipulated g achieved by operating the ESPs effe es Emission Monitoring Analyzer Da er the same is evident from the period accredited & MoEFCC recognized Th accredited & MoEFCC recognized Th re I. H2S and Mercaptans are monitor C recognized Third Party Lab. TNPL e TG sets is connected directly to pollo	I norms for the boilers in the chemical recovery section ectively and efficiently. The same is evidenced by the ta – Connected with Care Air Centre of TNPCB. lical-biannual TNPCB Stack Survey ROA, monthly ird Party Lab analysis data. The latest TNPCB and ird Party Lab Stack survey ROA is submitted as red once a month through NABL accredited & has a dedicated captive power plant. A separate feeder	s shall be the Ministry issued by the ontrolled by material

the Se accred	ollectors, wind barriers, greenery de condary fugitive emissions. H2S ar	asures installed viz., Closed conveyors, water sprinklers, evelopment, telescopic chute, etc., are installed to control ad Mercaptans are monitored once a month through NABL Party Lab. Copy of latest H2S and Mercaptans report	21/05/2024
4	WATER QUALITY MONITORING AND PRESERVATION	iv. AOx levels shall be controlled less than 1 kg/ton of manufactured as per E(P) Act. The odours and gases fristripping column, evaporator hot well and hot condens be burnt in the incinerator.	rom cooking
AOX Third		nth through NABL accredited & MoEFCC recognized 0.11 Kg/T against 1 kg/tone of paper production. The tted as Annexure VI.	Date: 21/05/2024
5	WATER QUALITY MONITORING AND PRESERVATION	v. Total water consumption shall not exceed as ment Corporate Responsibility for Environment Protection (guidelines.	
The av		nly 32,134 M3/day. Average fresh water consumption and d 21 M3/T of Product respectively. A copy of the CREP omitted as Annexure XII.	Date: 21/05/2024
6	WATER QUALITY MONITORING AND PRESERVATION	vi. Total water requirement from River Cauvery shal 72,000 M3/day as per the permission accorded by the Department. Efforts shall be made to reduce the quanti intake and maximize use of recycled water.	Public Works
PPs			
As per 2013, during	the freshwater requirement is 52,80	Io. F.No.J-11011/710/2007-IA-II (i) dated 11th February 00 m3/day. However, the average freshwater consumption M3/day excluding domestic consumption is well within the	Date: 21/05/2024
As per 2013, during	MoEF – Environment Clearance N the freshwater requirement is 52,80 the review period is about 32,134	00 m3/day. However, the average freshwater consumption	21/05/2024 Treatment covery areas Il be made to ffluent (filtrat arge to the escribed by the gent. The scribed
As per 2013, during approv 7 7 PPs The un	MoEF –Environment Clearance N the freshwater requirement is 52,80 the review period is about 32,134 yed quantity. WATER QUALITY MONITORING AND PRESERVATION Submission: Complied nit installed Primary, Secondary, an	00 m3/day. However, the average freshwater consumption M3/day excluding domestic consumption is well within the vii. The process effluent shall be treated in Effluent Plant (ETP) through primary, secondary and tertiary tr methods. Spill liquor from paper mill and chemical rec shall also be collected and properly treated. Effort shal reduce the colour in the effluent discharged. Treated eff shall be used for the green belt development and disch- nearby drain only after conforming to the standards pro TNPCB and under E(P) Act, whichever are more string quality of the treated effluent shall conform to the press standards and used for irrigation. AOx and TOC levels	21/05/2024 Treatment reatment covery areas Il be made to ffluent (filtrat arge to the escribed by th gent. The scribed

Influer month		tion and treated effluent quality are monitored once a ited & MoEFCC recognized laboratory. Summary of ta attached as Annexure IV	Date: 21/05/2024
9	WATER QUALITY MONITORING AND PRESERVATION	ix. Efforts shall be made to reduce total dissolved s the effluent and effluent discharged shall not exceed paper produced as per the norms prescribed in the E(80 m3/T of
The av		21 M3/per MT of paper production for the review period. ffluent are enclosed as Annexure XXIII.	Date: 21/05/2024
10	WATER QUALITY MONITORING AND PRESERVATION	x. Chemical recovery plant shall be installed for the black liquor. In order to achieve colour reduction, ten system like activated filter, multi-media filter etc. sha The inorganic compounds shall be recovered in the or recovery plant and organic compounds burnt in the re The effluent from bagasse handling and fibre prepara containing high BOD and SS shall be segregated and clarifier to reduce the SS. Effluent with low BOD an from paper machine, pulp mill and soda recovery pla passed through bar screen, mechanical screen, detrifte clarifier to remove SS. Anaerobic treatment shall be BOD levels. The bio-gas from the bio-methanation p utilized in lime kiln. The effluent shall be further treat aeration system based on activated sludge process to COD to the permissible levels. No trade effluent shall into Pugalur Canal and seepage from TEWLIS areas prevented entering the same canal during the monsoor	tiary treatment all be explored, hemical ecovery boiler, ition section treated in a d SS generated nt shall be or and primary done to reduce lant shall be ited in the reduce BOD/ l be discharged hall be
All the	ent for bagasse wash water, use of	covery plant, ETP tertiary Treatment, Biogas plant with pre- f biogas in lime kiln, ASL implemented and in continuous	Date: 21/05/2024
11	WATER QUALITY MONITORING AND PRESERVATION	xi. Permission for the drawal of 75,750 M3/day frow water shall be obtained from the concerned department	
Permis	Submission: Complied ssion for drawl of 16 MGD water closed as Annexure XXIV	from River Cauvery from Govt. of TamilNadu is available	Date: 21/05/2024
12	WATER QUALITY MONITORING AND PRESERVATION	xii. Action plan shall be prepared for further colour the effluent and submitted to the Ministry, its Region Bangalore, TNPCB and CPCB and implemented.	
TNPL	Submission: Complied has implemented tertiary treatmented tertiary tertiary treatmented tertiary tertia	nt to reduce color in the treated effluent by Ozonation since	Date: 21/05/2024
13	WATER QUALITY MONITORING AND PRESERVATION	xiii. Regular ground water monitoring shall be carr relevant parameters where effluent is discharged.	ied out for all t
	Submission: Complied	onducted once in three months through TNPCB and NABL	Date: 21/05/2024

14	WATER QUALITY MONITORING AND PRESERVATION	xiv. Apart from other parameters, TOC and AOx leve treated effluent shall be measured once in a month. The shall not 1.5kg/tone of paper as per the norms prescribe	e AOx levels
AOX Party 1		nrough NABL accredited & MoEFCC recognized Third 0.11 Kg/T against 1 kg/ton of paper production. Copy	Date: 21/05/2024
15	WASTE MANAGEMENT	xv. Sludge dewatering system shall be installed. ETP be used as manure Chip dust and pith shall be used as a existing boilers of TNPL. Lime mud reburning kilns sh to recycle lime sludge and to regenerate burnt lime req caustizing process. Efforts shall be made for the utilis sludge and mud in the cement plants.	fuel in the nall be installe uired for the
The de as mai the lin	nure. Chip dust and pith are used as fue	and decanters is installed ETP. ETP Sec. Sludge is used I. Two lime kilns are in continuous operation to recycle & mud (Lime Grit) is being used in the TNPL Cement	Date: 21/05/2024
16	WATER QUALITY MONITORING AND PRESERVATION	xvi. Action plan for the disposal of Reverse Osmosis shall be prepared and submitted to the Ministry's Regio Bangalore, TNPCB and CPCB within three months of letter.	onal Office at
TNPL conclu Howe	ided that the implementation of RO in H	the Tamil Nadu Water investment company and Effluent recycling is economically not feasible. Indically feasible technology availability in the market,	Date: 21/05/2024
TNPL conclu Howe	carried out a pilot plant study through aded that the implementation of RO in H ver, TNPL continuously seeking, econo	Effluent recycling is economically not feasible.	21/05/2024 per Fly ash
TNPL conclu Howe to imp 17 17 PPs Fly as bricks	. carried out a pilot plant study through aded that the implementation of RO in Fiver, TNPL continuously seeking, econoplement. WASTE MANAGEMENT Submission: Complied h is being utilized in the TNPL cement	Effluent recycling is economically not feasible. mically feasible technology availability in the market, xvii. Proper utilization of fly ash shall be ensured as Notification, 1999 and subsequent amendment in 2003 plant and the balance, if any is being sent to fly ash reports are being submitted to the TNPCB authorities.	21/05/2024 per Fly ash Date:
TNPL conclu Howe to imp 17 17 PPs Fly as bricks The la	carried out a pilot plant study through aded that the implementation of RO in Ever, TNPL continuously seeking, econoplement. WASTE MANAGEMENT Submission: Complied h is being utilized in the TNPL cement manufacturing units. Fly ash Quarterly	Effluent recycling is economically not feasible. mically feasible technology availability in the market, xvii. Proper utilization of fly ash shall be ensured as Notification, 1999 and subsequent amendment in 2003 plant and the balance, if any is being sent to fly ash reports are being submitted to the TNPCB authorities.	21/05/2024 per Fly ash Date: 21/05/2024 tter on n (CREP), the
TNPL conclu Howe to imp 17 PPs Fly as bricks The la 18 PPs TNPL Comp	carried out a pilot plant study through 1 uded that the implementation of RO in F uded that the implementation of RO in F ver, TNPL continuously seeking, econo olement. WASTE MANAGEMENT Submission: Complied h is being utilized in the TNPL cement manufacturing units. Fly ash Quarterly test fly ash submission details are enclo Corporate Environmental Responsibility Submission: Complied , is periodically submitting the compliant	Effluent recycling is economically not feasible. mically feasible technology availability in the market, xvii. Proper utilization of fly ash shall be ensured as Notification, 1999 and subsequent amendment in 2003 plant and the balance, if any is being sent to fly ash reports are being submitted to the TNPCB authorities. bed as Annexure VIII. xviii. As per the recommendations made in the Char Corporate Responsibility for Environmental Protection company shall undertake measures for discharge of wi	21/05/2024 per Fly ash Date: 21/05/2024 tter on n (CREP), the

for the C		en belt with 38.42% for the paper plant and 42.37% Green Belt report for the current review period is	Date: 21/05/2024
20	PUBLIC HEARING	xx.All the commitments made to the public during shall be satisfactorily implemented.	public hearing
All the c	Ibmission: Complied ommitments made in the public hear as Annexure XXV	ing were satisfactorily implemented. Details are	Date: 21/05/2024
21	Corporate Environmental Responsibility	xxi. All the recommendations made in the Charter of Responsibility for Environment Protection (CREP) for Paper Sector shall be strictly implemented.	
TNPL is Complia		nce against the CREP conditions as part of six monthly ed in the ECs. A copy of the report for the current	Date: 21/05/2024
22	Human Health Environment	xxii. The company shall provide housing for constr within the site with all necessary infrastructure and fa fuel for cooking, mobile toilets, mobile STP, safe dri medical health care, creche etc. The housing may be temporary structures to be removed after the complete	acilities such as nking water, in the form of
		project.	
Complie			Date:
Complie		project.	1
Complie	d during the project execution period onditions	project.	Date: 21/05/2024 stipulations
Complie neral C Sr.No. 1 PPs Su Strictly c	d during the project execution period onditions Condition Type Statutory compliance	project. I. Not applicable -during the review period Condition Details i. The project authorities must strictly adhere to the made by the Tamil Nadu state Pollution Control Boa	Date: 21/05/2024 stipulations
Complie neral C Sr.No. 1 PPs Su Strictly c	d during the project execution period onditions Condition Type Statutory compliance Ibmission: Complied complying with TNPCB conditions. 7	project. I. Not applicable -during the review period Condition Details i. The project authorities must strictly adhere to the made by the Tamil Nadu state Pollution Control Boa the State Government.	Date: 21/05/2024 stipulations rd (TNPCB) ar Date: 21/05/2024 nt shall be Environment a ject proposal a fresh referenc of conditions
Complies neral C Sr.No. 1 PPs Su Strictly c from tim 2 PPs Su TNPCB MT/Ann	d during the project execution period onditions Condition Type Statutory compliance Ibmission: Complied complying with TNPCB conditions. Statutory compliance Ibmission: Complied granted fresh CTO Expansion for en	project. I. Not applicable -during the review period Condition Details i. The project authorities must strictly adhere to the made by the Tamil Nadu state Pollution Control Boa the State Government. The consent to operate for the facility is being renewed ii.No further expansion or modernization in the pla carried out without prior approval of the Ministry of Forests. In case of deviations or alterations in the proof rom those submitted to this Ministry for clearance, a shall be made to the Ministry to assess the adequacy imposed and to add additional environmental protect	Date: 21/05/2024 stipulations rd (TNPCB) ar Date: 21/05/2024 nt shall be Environment a ject proposal a fresh referenc of conditions

Hard a being s		C compliance reports including monitoring data are ce in six months. Periodical EC submission details are	Date: 21/05/2024
4	Human Health Environment	ix. Adequate provisions for infrastructure facilities supply, fuel, sanitation etc. shall be ensured for constru- during the construction phase so as to avoid felling of pollution of water and the surroundings.	uction worker
	Submission: Complied lied during the project execution perio	d. Not applicable -during the review period	Date: 21/05/2024
5	Corporate Environmental Responsibility	x.The project proponent shall have a scheme for soci the surrounding villages with reference to contribution construction, education, establishment of health centre facilities, drinking water supply, community awarenes employment to local people wherever possible both fo non-technical jobs.	in road s, sanitation s and
TNPL		5% of the project cost of Rs.15.5 Cr. The total cost spent 2.43 Crores. Details are submitted as Annexure XIV.	Date: 21/05/2024
6	Statutory compliance	xi. A separate Environmental Management Cell equi fledged laboratory facilities to carry out the various En Management and Monitoring functions shall be set up control of Senior Executive.	vironmental
		l is available and the same is enclosed as Annexure	Date: 21/05/2024
7	Statutory compliance	xii. The project authorities will provide Rs.128.00 Cr recurring and non-recurring to implement the condition the Ministry of Environment and Forests as well as the Government along with the implementation schedule f conditions stipulated herein. The funds so provided she diverted for any other purposes. Rs.159.00 Crores is al environment protection measures.	ns stipulated b State for all the ould not be
A sum		allocated for MEP and MDP respectively were fully s. Details are submitted as Annexure XIV	Date: 21/05/2024
8	Statutory compliance	xiii. Six monthly status report on the project vis-à-vi implementation of environmental measures shall be su Ministry's Regional Office at Bangalore/CPCB/TNPC	bmitted to thi
Hard a submit		liance reports including monitoring data are being al submission details are enclosed. EC periodical e XIX.	Date: 21/05/2024

		copies of the clearance letter are available with the Tan Pollution Control Board and may also be seen at Webs Ministry of Environment and Forests at http://www.env This shall be advertised within seven days from the dat the clearance letter at least in two local newspapers tha circulated in the region of which one shall be in the ver language of the locality concerned and a copy of the sa forwarded to the Regional Office.	ite of the vfor.nic.in. te of issue of it are widely rnacular
Public r	Submission: Complied notice is given in two local newspapers exure XXVII.	s dated 31st DEC 2008. A copy of the same is attached	Date: 21/05/2024
10	Statutory compliance	xv.The Project Authorities shall inform the Regional as the Ministry, the date of financial closure and final a project by the concerned authorities and the date of cor land development work.	approval of th
The Bo		proposal in 2007 and financial closure was achieved by TNPCB (CTO for the project) was on 14/01/2011.	Date: 21/05/2024
11	MISCELLANEOUS	iii. Proper house keeping and cleanliness must be ma and outside the plant.	intained with
	ubmission: Complied s maintaining good housekeeping with	in and outside of the plant premises.	Date: 21/05/2024
12	Noise Monitoring & Prevention	iv. The overall noise levels in and around the plant a kept well within the standards (85 dBA) by providing r measures including acoustic hoods, silencers, enclosure sources of noise generation. The ambient noise levels s to the standards prescribed under EPA Rules, 1989 viz. time) and 70 dBA (night time)	noise control es etc. on all should confor
TNPL i accredit	ted & MoEFCC recognized Third Party	rres. The Noise survey report by TNPCB and NABL y Lab reveals that values are well within the prescribed & MoEFCC recognized Third Party Lab Noise survey	Date: 21/05/2024
	TNPCB and Latest NABL accredited & ubmitted as Annexure XVI.	x MoEFCC recognized Third Party Lab Noise survey	
report s		v.Occupational health surveillance programme shall as regular exercise for all the employees, specially for t in handling hazardous substances. The first aid facilitie occupational health centre shall be strengthened and th records of each employee should be maintained separat	those engage es in the e medical
13 PPs S OHC is parameter	ubmitted as Annexure XVI. Human Health Environment	v.Occupational health surveillance programme shall as regular exercise for all the employees, specially for t in handling hazardous substances. The first aid facilitie occupational health centre shall be strengthened and th records of each employee should be maintained separat ure and functioning four resident doctors with requisite rds as per Factory Act. A Copy of the OHC report for	those engage es in the e medical tely. Date:
13 PPs S OHC is parameter	ubmitted as Annexure XVI. Human Health Environment Gubmission: Complied provided with the required infrastructu dical staff and maintaining health record	v.Occupational health surveillance programme shall as regular exercise for all the employees, specially for t in handling hazardous substances. The first aid facilitie occupational health centre shall be strengthened and th records of each employee should be maintained separat ure and functioning four resident doctors with requisite rds as per Factory Act. A Copy of the OHC report for	those engaged es in the e medical tely. Date: 21/05/2024

15	Statutory compliance	vii.The co	ompany shall undertake rainwater harvesting	measures to		
		recharge the	e ground water.	,		
TNPL s 4.52 La	Submission: Complied so far has implemented rainwater kh Sq.meter area through 627 rai ing details are submitted as Anne	nwater pits, 5 pond	s to recharge groundwater covering about s, and five reservoirs. Rainwater	Date: 21/05/2024		
Visit Remarks						
ast Site	Visit Report Date:		21/04/2022			
ddition	al Remarks:					

Your (Environment Clearance) application has been Submitted with following details					
Proposal No	IA/TN/IND/22309/1910				
Compliance ID	69710729				
Compliance Number(For Tracking)	EC/M/COMPLIANCE/69710729/2024				
Reporting Year	2024				
Reporting Period	01 Jun(01 Oct - 31 Mar)				
Submission Date	21-05-2024				
IRO Name	V Geroge Jenner				
IRO Email	tr025@ifs.nic.in				
State	TAMIL NADU				
IRO Office Address	Integrated Regional Offices, Chennai				
Note:- SMS and E-Mail has been sent to V Geroge Jenner, TAMIL NADU with Notification to Project Proponent.					

	2 01 Jun(01	ompliance Report 2024 Oct - 31 Mar) vledgment	
Proposal Name			ction from 2,05,000 to 2,45,000 45,000 MTPA market pulp at rur District.
Name of Entity / Corporate Office		Tamil Nadu Newsprint and Papers Limited	
Village(s)		N/A	
District		KARUR	
Proposal No.	IA/TN/IND/22309/1910	Category	Industrial Projects - 1
Plot / Survey / Khasra N/A		Sub-District	N/A
State	TAMIL NADU	Entity's PAN	NA
MoEF File No.	J-11011/375/2005-IA- II(I)	Entity name as per PAN	NA

Compliance Reporting Details

Reporting Year	2024
Remarks (if any)	EC compliance status report pertaining to expansion of Paper Production from 2,05,000 to 2,45,000 MTPA and Production of 45,000 MTPA market pulp at TNPL and for the period ending 30/09/2023.
Reporting Period	01 Jun(01 Oct - 31 Mar)

Details of Production and Project Area

Name of Entity /	Tamil Nadu Newsprint and Papers Limited
Corporate Office	Famil Nadu Newspinit and Fapers Linited

	Project Area as per EC Granted	Annual Project Area in Possession
Private	151.76	3.44
Revenue Land	0	0
Forest	0	0
Others	0	0
Total	151.76	3.44

Production Capacity

Sr. no	Product Name	units	Valid Upto	Capacity	Production last year	Capacity as per CTO
1	Writing and Pring Paper	Tons per Annum (TPA)	31/03/2027	480000	422742	480000

Conditions

Specific Conditions

Sr.No.	Condition Type	Condition Details	
1	AIR QUALITY MONITORING AND PRESERVATION	i. The gaseous emissions (SPM, SO2, NOX and H2 various process units shall conform to the standards pr time to time. The State Board may specify more string for the relevant parameters keeping in view the nature its size and location. At no time, the emission level sha the prescribed standards. In the event of failure of any control system(s) adopted by the unit, the respective un be restarted until the control measures are rectified to a desired efficiency. ESPs shall be provided to the recov 99.9% and lime kiln to collect the solids (Sodium salts flue gas.	escribed from ent standards of the industr all go beyond pollution nit should not achieve the very boiler wit
TNPL h mitigate recovery mainten with car MoEFC	e the boiler particulate emission. The y section are achieved by operating ance. The same is evidenced from t re air center of TNPCB & Periodical	tor (ESP) in the Recovery Boiler, Lime Kilns Section to e stipulated norms for the boilers in the chemical ESPs efficiently with appropriate periodical he Continues Emission Monitoring Data – Connected I TNPCB Stack Survey ROA & NABL accredited & The latest TNPCB and NABL accredited & MoEFCC OA is submitted as Annexure I.	Date: 21/05/2024
		ii. Three on-line monitoring stations for ambient a	
2	AIR QUALITY MONITORING AND PRESERVATION	boundary of the plant shall be set up along with anothe monitoring system for recovery boiler for particulate n NOX and H2S and the on-line data shall be submitted and TNPCB.	natter, SO2,
PPs S THREE Coal Ya recovery	MONITORING AND PRESERVATION ubmission: Complied CCAAQMS MONITORING STATI ard 3. Entrance of TNPL Cement Pla	monitoring system for recovery boiler for particulate n NOX and H2S and the on-line data shall be submitted	natter, SO2, to the CPCB Date:
PPs S THREE Coal Ya recovery	MONITORING AND PRESERVATION ubmission: Complied CAAQMS MONITORING STATI ard 3. Entrance of TNPL Cement Pla y Boiler for PM, SO2, NOX, and H2	 monitoring system for recovery boiler for particulate n NOX and H2S and the on-line data shall be submitted and TNPCB. ION LOCATIONS 1. Canteen Building 2. Vicinity of ant. Online Stack Monitoring was Provided for the 	Date: 21/05/2024
PPs S THREE Coal Ya recovery submitte 3 PPs S ECF (EI	MONITORING AND PRESERVATION ubmission: Complied CAAQMS MONITORING STATI ard 3. Entrance of TNPL Cement Pla y Boiler for PM, SO2, NOX, and H2 ed as Annexure II. Statutory compliance ubmission: Complied	 monitoring system for recovery boiler for particulate in NOX and H2S and the on-line data shall be submitted and TNPCB. ION LOCATIONS 1. Canteen Building 2. Vicinity of ant. Online Stack Monitoring was Provided for the 2S. Summary of Ambient and Stack CEMS Data iii.The company shall phase out Element Chloring bleaching process. The Chlorine dioxide plant shall be commissioned on or before May, 2007. chnology was commissioned in May 2008 by installing a 	Date: 21/05/2024 e from pulp installed and
PPs S THREE Coal Ya recovery submitte 3 PPs S ECF (EI	MONITORING AND PRESERVATION ubmission: Complied CAAQMS MONITORING STATI ard 3. Entrance of TNPL Cement Pla y Boiler for PM, SO2, NOX, and H2 ed as Annexure II. Statutory compliance ubmission: Complied lemental chlorine-free) bleaching tea	 monitoring system for recovery boiler for particulate in NOX and H2S and the on-line data shall be submitted and TNPCB. ION LOCATIONS 1. Canteen Building 2. Vicinity of ant. Online Stack Monitoring was Provided for the 2S. Summary of Ambient and Stack CEMS Data iii.The company shall phase out Element Chloring bleaching process. The Chlorine dioxide plant shall be commissioned on or before May, 2007. chnology was commissioned in May 2008 by installing a 	natter, SO2, to the CPCB Date: 21/05/2024 e from pulp installed and Date: 21/05/2024 covery Boiler ower plant,

		within prescribed norms. The latest TNPCB and NABL Party Lab Stack survey ROA is submitted as Annexure I.
5	AIR QUALITY MONITORING AND PRESERVATION	v. Fugitive emissions shall be controlled by providing dust collectors and water spraying system at material transfer points. A super batch digester shall be installed to control odour. All the recommendations of the Corporate Responsibility for Environmen Protection (CREP) issued by the CPCB shall be followed. Arrangements for burning the non-condensable gases in a lime kil shall be in place before the new digesters are commissioned. The existing direct contact evaporator shall be changed to the surface contract evaporator. Monitoring of H2S and Mercaptans shall be carried out once in a month in the work environment.
Dust of comm	nissioned and in operation. H2S and dited & MoEFCC recognized Third	s, water sprinklers, dust collectors, wind barriers, etc. NCG d Mercaptans are monitored once a month through NABL l Party Lab. Copy of latest report enclosed as Annexure
6	WATER QUALITY MONITORING AND PRESERVATION	vi. Total fresh water requirement from River Cauvery shall not exceed 66,380 m3/d. presently, 38% treated waste water is recycle and reused in the process. Effort shall be made to further reduce water consumption by spill liquor collection from pulp mill and chemical recovery area, Cooling towers, dewatering of waste slud in lieu of vacuum drum filters etc. the effluent generation shall no exceed 37,715 m3/day The quality of the treated effluent shall conform to the prescribed standards and used for irrigation.
As pe conse efflue accred	ervation, the average total water con ent discharge are 28 M3/T and 21 M dited & MoEFCC recognized Third	requirement is 52,800 M3/d. However, based on asumption is only 32,134 M3/day. Fresh water and treated 13/T of paper respectively. TNPCB and Latest NABL I Party Lab effluent water analysis report ROA is submitted luent is well within the TNPCB norms.
7	WATER QUALITY MONITORING AND PRESERVATION	vii. The black liquor generated by the paper mill shall be concentrated in an evaporation pond. The inorganic compounds sh be recovered in the chemical recovery plant and organic confound brunt in the recovery boiler. The effluent from bagasse handling a fibre preparation section containing high BOD and SS shall be segregated and treated in a clarifier to reduce the SS. Effluent with low BOD and SS generated from paper machine, pulp mill and so recovery plant shall be passed through bar screen, mechanical scru detritor and primary clarifier to remove SS. Anaerobic treatment s be done to reduce BOD levels. A bio-methanation plant shall be installed to treat high BOD/COD steams and generate bio-gas upt 20,000 m3/d to be utilized in lime kiln. The effluent shall be furth treated in the aeration system based on 'Activated Sludge Process reduce BOD/COD to the permissible levels. No trade effluent sha
		discharged into Pugalur canal and seepage from TEWLIS area shabe prevented entering the same canal during the monsoon.

8	WATER QUALITY MONITORING AND PRESERVATION	viii. The use of Ferric/Ferrous chloride shall be optin reduce the colour in the treated effluent.	nized to furth
Ferric/	Submission: Complied / Ferrous Chloride usage stopped due ry treatment using Ozone introduced	to TDS increase in effluent. To further reduce colour, during 2010.	Date: 21/05/2024
9	WATER QUALITY MONITORING AND PRESERVATION	ix. Apart from other parameters. TOC and AOX leve treated effluent shall be measured once in a month.	ls in the
AOX a Third		h through NABL accredited & MoEFCC recognized).11 Kg/T against 1 kg/tone of paper production. Copy of	Date: 21/05/2024
10	WASTE MANAGEMENT	x. Solid waste generated in the form of ash and lime provided to cement manufacturing unit. Chip dust and used as fuel in the existing boilers of TNPL. ETP sludg given to cardboard/egg tray manufactures. The caustic shall be augmented to 2,000 m3/day to overcome the p silica bagasse liquor. Lime mud reburning kilns shall b recycle lime sludge and to regenerate burnt lime requir causticizing process.	pith shall be ge shall be izing plant roblem of hig e installed to
Fly as		ent Plant. Chip dust and pith are used as fuel. ETP sludge ricizing plant augmented. 2 lime kilns are in operation.	Date: 21/05/2024
11	Corporate Environmental Responsibility	xi. As per the recommendations made in the Charter Responsibility for Environmental Protection (CREP), to shall undertake measures for discharge of AOX less the of paper within two years and 1.0 kg/tone of paper in 5 waste water discharge per ton of paper shall be less that paper.	he company an 1.5 kg/ton years. The
PPs		y 32,134 M3/day. Average freshwater consumption and 21 M3/T of paper respectively. A copy of the CREP hitted as Annexure XII.	Date: 21/05/2024
treated	for the eartent review period is such		
treated	GREENBELT	xii. Green belt shall be raised in at least 50 ha. (33%) effects of fugitive emissions all around the plant in as p guidelines and in consultation with local DFO.	
treated report 12 PPs The ur the Ca	GREENBELT Submission: Complied nit has developed and maintained a gr	effects of fugitive emissions all around the plant in as p	
treated report 12 PPs The ur the Ca	GREENBELT Submission: Complied nit has developed and maintained a gr ptive Power Plant. A Copy of the Gr	effects of fugitive emissions all around the plant in as p guidelines and in consultation with local DFO.	Date: 21/05/2024

harvesting details are submitted as Annexure XVII.

Sr.No.	Condition Type	Condition Details	
1	Human Health Environment	v.Occupational health surveillance program shall be regular exercise for all the employees, especially for th handling hazardous substances. The first aid facilities i Occupational health centre shall be strengthened and th records of each employee should be maintained separat	ose engaged n the ne medical
OHC is paramed		cture and functioning four resident doctors with requisite ords as per Factory Act. A Copy of the OHC report for nexure X.	Date: 21/05/2024
2	Statutory compliance	vi.The project proponent shall also comply with all the environmental protection measures and safeguards record the EIA/EMP report.	
The entir		28 cores allocated for the environment protection ompletely utilized. Details are submitted as Annexure	Date: 21/05/2024
3	Statutory compliance	vii.The implementation of the project vis-à-vis enviro action plans shall be monitored by Ministry's Regional Bangalore/TNPCB/CPCB. A six monthly compliance shall be submitted to monitoring agencies.	Office at
Hard and being su		C compliance reports including monitoring data are e in six months. EC Periodical submission details are	Date: 21/05/2024
4	Human Health Environment	viii.Adequate provisions for infrastructure facilities s supply, fuel, sanitation etc. shall be ensured for constru- during the construction phase so as to avoid felling of t pollution of water and the surroundings.	ction worker
	ubmission: Complied d during the project execution perior	d. Not applicable -during the review period	Date: 21/05/2024
5	Corporate Environmental Responsibility	ix. The project proponent shall have a scheme for soci in the surrounding villages with reference to contributi- construction, education, establishment of health centres facilities, drinking water supply, community awareness employment to local people whenever and wherever po- technical and non-technical jobs.	on in road s, sanitation s and
			Date:
TNPL so		5% of the project cost of Rs.15.5 Cr. The total cost spent .43 Crores. Details are submitted as Annexure XIV.	21/05/2024

			1
	ubmission: Complied rate Environmental Management C	Cell is available and the same is enclosed as Annexure	Date: 21/05/2024
7	Statutory compliance	xi.The project authorities will provide adequate funds recurring and non-recurring to implement the condition the Ministry Environmental and Forests as well as the Government along with the implementation schedule for conditions stipulated herein. The funds so provided sho diverted for any other purposes. Rs.159.00 Crores is all environment protection measures.	ns stipulated l State or all the ould not be
TNPL s		st 5% of the project cost of Rs.15.5 Cr. The total cost spent 2.2.43 Crores. Details are submitted as Annexure XIV.	Date: 21/05/2024
8	Statutory compliance	xii. Six monthly status report on the project vis-à-vis implementation of environmental measures shall be su Ministry's Regional Office at Bangalore/CPCB/TNPC	
Hard an being s		EC compliance reports including monitoring data are once in six months. EC Periodical submission details are	Date: 21/05/2024
9	Statutory compliance	xiii. The project Proponent shall inform the public the has been accorded environmental clearance by the Min copies of the clearance letter are available with the Tar Pollution Control Board/Committee and may also be se of the Ministry of Environmental and Forests at http://www.envfor.nic.in. This shall be advertised with from the date of issue of the clearance letter at least in newspapers that are widely circulated in the region of v be in the vernacular language of the locality concerned	istry and nil Nadu Stat een at Websit in seven days two local
		the same shall be forwarded to the Regional office.	
	ubmission: Complied ue of environmental clearance fror	the same shall be forwarded to the Regional office. n MoEF was advertised on 6th June 2006	and a copy of Date:
			and a copy of Date: 21/05/2024 I Office as we
The iss 10 PPs S The ent	Statutory compliance Submission: Complied ire allocated funds of Rs. 159 & R	n MoEF was advertised on 6th June 2006 xiv.The Project Authorities shall inform the Regional as the Ministry, the date of financial closure and final a project by the concerned authorities and the date of con-	and a copy of Date: 21/05/2024 I Office as we approval of the mmencing the Date:
The iss 10 PPs S The ent measur	Statutory compliance Submission: Complied ire allocated funds of Rs. 159 & R	n MoEF was advertised on 6th June 2006 xiv.The Project Authorities shall inform the Regional as the Ministry, the date of financial closure and final a project by the concerned authorities and the date of cor land development work. s. 128 crores allocated for the environment protection	and a copy of Date: 21/05/2024 I Office as we approval of the nmencing the Date: 21/05/2024 tipulations

l be nment ar oposal reference litions asures Date: 05/2024 ed within Date: 05/2024 e kept rol e. on all d conforn IBA (day
ed within Date: 205/2024 e kept rol c. on all d conform
Date: 05/2024 e kept rol c. on all d conform
e kept rol con all d conform
rol c. on all d conform
Date: 05/2024

DETAILS OF ANNEXURES

PROJECT:

- (1) Installation of Deinking Plant and Upgradation of Captive Co generation Plant
- (2) The expansion of Pulp and Paper Mill 2,45,000 to 4,00,000 TPA by installation of new paper machine 1,55,000 TPA and balancing of Hard Wood and Bagasse Pulp Mill 300 to 330 and 500 to 550 TPD
- (3) The expansion of Paper Production from 2,05,000 to 2,45,000 TPA and Production of 45,000 TPA of Market Pulp

SL.NO	ANNEXURE NO	DESCRIPTION
1	ANNEXURE I	Latest TNPCB and NABL accredited & MoEFCC recognized Third Party Lab Stack
		survey Report
2	ANNEXURE II	Summary of Online Ambient and Stack CEMS Data
3	ANNEXURE III	TNPCB and Latest NABL accredited & MoEFCC recognized Third Party Lab effluent
		water analysis report
4	ANNEXURE IV	Summary of online Water Quality Watch (WQW) data
5	ANNEXURE V	TNPCB and Latest NABL accredited & MoEFCC recognized Third Party Lab Ground
		water analysis report
6	ANNEXURE VI	Copy of NABL accredited & MoEFCC recognized Third Party Lab AoX report
7	ANNEXURE VII	Copy of latest comprehensive water management plan report
8	ANNEXURE VIII	Copy of Latest fly ash submission details to TNPCB
9	ANNEXURE IX	Copy of Green Belt report for current review period
10	ANNEXURE X	Copy of OHC report for current review period
11	ANNEXURE XI	Copy of updated fire protection facilities is available in TNPL
12	ANNEXURE XII	Copy of CREP recommendations for current review period
13	ANNEXURE XIII	Detail of DIP public Hearing implementation in TNPL
14	ANNEXURE XIV	Copy of CSR Activities report for current review period
15	ANNEXURE XV	TNPCB and Latest NABL accredited & MoEFCC recognized Third Party Lab
		Ambient Air survey report
16	ANNEXURE XVI	TNPCB and Latest NABL accredited & MoEFCC recognized Third Party Lab Noise
		survey report
17	ANNEXURE XVII	Copy of Rain water harvesting facilities in TNPL
18	ANNEXURE XVIII	Copy of DIP - environmental clearance letter was submitted to Kagithapuram
		town panchayat
19	ANNEXURE XIX	Submission of EC Periodical report
20	ANNEXURE XX	Submission of Latest Environmental Statement (Form V) report
21	ANNEXURE XXI	Copy of DIP - environmental clearance Newspaper Advertisement
22	ANNEXURE XXII	NABL accredited & MoEFCC recognized Third Party Lab H_2S and Mercaptans
		report
23	ANNEXURE XXIII	Efforts taken to reduce TDS in treated effluent
24	ANNEXURE XXIV	Permission for drawl of 16 MGD water from River Cauvery from Govt. of
		Tamil Nadu
25	ANNEXURE XXV	Detail of MEP public Hearing implementation in TNPL
26	ANNEXURE XXVI	Environmental Management Cell
27	ANNEXURE XXVII	Copy of MEP - environmental clearance Newspaper Advertisement

ANNEXURE I

TNPCB REPORT – STACK EMISSION

Report No.DEL/DGL/61

TAMILNADU POLLUTION CONTROL BOARD

District Environmental Laboratory, Dindigul.

STACK MONITORING SURVEY - Report of Analysis

Report No.TNPCB/DEL/DGL/F.No.70/SM/2023-2024, Dated:20.03.2024

- 1. Name of the Industry : M/s. Tamilnadu Newsprint and Papers Ltd.,
- Address of the Industry : Pulp Plant & Paper Division, Kagithapuram - 639 136, Karur District.
- 3. Date of survey

: 14.02.2024 & 15.02.2024

Stack Monitoring Survey Results

SL No	Stack attached to		Velocity in (m/sec)	Discharge rate in (Nm//Hr)	Pollutants (mg/Nm ³)					
		Stack Temp ⁶ C			РМ	SO2	NO.	Cla	H ₂ S	Acid Mist
1.	Recovery Boiler A,B & C	159	12.35	2,97,474	36	18	92		0.168	•
2.	Lime Kiln - I	168	11.16	21,326	25	24	74		0.154	•
3.	Lime Kiln - II	164	12.42	19,508	23	31	72		0.146	•
4.	Hard wood Boiler	68	10.97	6,827	51	29	•	0.702	-	<0.05
5.	Chemical Baggasse	76	9.93	8,712	53	34		0.540	-	< 0.05

End of the report

80 03 20.24 Jr. Environmental Scientist

Deputy Chief Scientific Officer DEL, TNPCB, Dindigul.

---- Page 4 of 11----

Report No.DEL/DGL/62

TAMILNADU POLLUTION CONTROL BOARD

District Environmental Laboratory, Dindigul.

STACK MONITORING SURVEY - Report of Analysis

Report No.TNPCB/DEL/DGL/F.No.71/SM/2023-2024, Dated: 19.03.2024
1. Name of the Industry : M/s. Tamilnadu News Print and Papers Ltd.,

 Address of the Industry : Power Plant Division, Kagithapuram - 639 136, Karur District.

3. Date of survey

: 14.02.2024

Stack Monitoring Survey Results

SL. No	Stack attached to	Stack Temp °C	Velocity in (m/sec)	Discharge rate in (Nm//Hr)	Pollutants (mg/Nm ³)		
					РМ	SO ₂	NO,
I.	Power Plant - VI	132	13.09	3,33,125	26	56	94.68
2.	Power Plant - VII	128	10.64	2,75,277	20	60.8	101.35

End of the report

03/2024

Jr. Environmental Scientist

2024

Deputy Chief Scientific Officer, DEL, TNPCB, Dindigul.

---- Page 2 of 5-----

LATEST NABL ACCREDITED & MoEF&CC RECOGNIZED THIRD PARTY LAB TEST REPORT – STACK EMISSION

www.ctllabs.in

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	CTL/CH/N-38325/2023-24 & 03.04.2024
Sample Number	N-38325/23-24
Name of the Customer	M 50525/25 21 M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],
Address	Kagithapuram - 639 136,
Address	Karur District, Tamil Nadu.
Sample Drawn by	Laboratory
Sample Name	Stack Emission
Sample Description	Stack Emission
Sampling Location	Stack attached with Lime Kiln -1
GPS Reading	11°03'17.3''N & 77°59'47.9''E
Sample Drawn on	26.03.2024
Sample Received on	29.03.2024
Sampling Plan & Procedure	CTL/QSP/F-89 & IS 11255
Sample Quantity	1 No
Equipment used for Sampling	Stack Kit 288 DTI 2020
Analysis Started on	29.03.2024
Analysis Completed on	03.04.2024
PHYSICAL PARAMETERS:	
STACK HEIGHT (m)	36
STACK TEMPERATURE (K)	438.0
STACK VELOCITY (m/s)	10.6
STACK GAS FLOW RATE (Nm ³ /hr)	20273.0
DIAMETER OF STACK AT PORTHOLE (m)	1.0
*APCM STATUS AT THE TIME OF SAMPLING	ESP - ON Condition
Test Results:	

Test Results:

The above sample tested as received, and results are as follows:

SL.NO	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS (as per EC condition)
1	OXIDES OF NITROGEN NOx (as NO_2)	IS 11255 PART 7 2005 (R 2017)	mg/Nm ³	113	500
2	SULPHUR DIOXIDE (SO ₂)	IS 11255 PART 2 1985 (R 2019)	mg/Nm ³	108	400
3	PARTICULATE MATTER(PM)	IS 11255 PART 1 1985 (R 2019)	mg/Nm ³	51.4	150
4	CARBON MONOXIDE (CO)		mg/Nm ³	134	NA
5	CARBON DIOXIDE (CO ₂)	CTL/SOP/STACK/10-2016 (Flue Gas Analyser)	%	13.0	NA
6	OXYGEN (O ₂)		%	6.5	NA

Verified by

For Chennai Testing Laboratory Pvt Ltd

-2 - 4

Authorised Signatory

G. MANIKANDAN Head - Environment Division (CHEMICAL)

Page 1 of 2

The figure photon for the source is realized white sources the first methods are possible. The figure is been provided by the source of the so

A - Super 19 | T.V.K. Industrial Estate | Guindy | E-mail : chennaitestinglab@gmail.com Chennai - 600 032 | Tamil Nadu | India | Telefax : +91-44-2250 1757

CIN: U93000TN2000PTC043869

www.ctllabs.in

TEST REPORT

Test Report No & Date		CTL/CH/N-38325/2023-24 & 03.04.2024						
SL.NO	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS (as per EC condition)			
7	MOISTURE CONTENT	IS 11255 PART 3 2008	%	7.5	NA			

NA - Not Available

HYDROGEN SULPHIDE(H₂S)

END OF REPORT

IS 11255 PART 4 2006

8

Verified by

For Chennai Testing Laboratory Pvt Ltd

10.0

-.

8

mg/Nm³

Authorised Signatory

Page 2 of 2

The figure photon is a contract of the second secon

A - Super 19 | T.V.K. Industrial Estate | Guindy | E-mail : chennaitestinglab@gmail.com Chennai - 600 032 | Tamil Nadu | India | Telefax : +91-44-2250 1757

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	CTL/CH/N-38326/2023-24 & 03.04.2024
Sample Number	N-38326/23-24
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],
Address	Kagithapuram - 639 136,
	Karur District, Tamil Nadu.
Sample Drawn by	Laboratory
Sample Name	Stack Emission
Sample Description	Stack Emission
Sampling Location	Stack attached with Lime Kiln -2
GPS Reading	11°03'16.635''N & 77°59'47.131''E
Sample Drawn on	26.03.2024
Sample Received on	29.03.2024
Sampling Plan & Procedure	CTL/QSP/F-89 & IS 11255
Sample Quantity	1 No
Equipment used for Sampling	Stack Kit 288 DTI 2020
Analysis Started on	29.03.2024
Analysis Completed on	03.04.2024
PHYSICAL PARAMETERS:	
STACK HEIGHT (m)	44
STACK TEMPERATURE (K)	420.0
STACK VELOCITY (m/s)	11.3
STACK GAS FLOW RATE (Nm ³ /hr)	18346.4
DIAMETER OF STACK AT PORTHOLE (m)	0.9
*APCM STATUS AT THE TIME OF SAMPLING	ESP - ON Condition
Test Results:	

Test Results:

The above sample tested as received, and results are as follows:

SL.NO	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS (as per EC condition)
1	OXIDES OF NITROGEN NOx (as NO ₂)	IS 11255 PART 7 2005 (R 2017)	mg/Nm ³	187	500
2	SULPHUR DIOXIDE (SO ₂)	IS 11255 PART 2 1985 (R 2019)	mg/Nm ³	239	400
3	PARTICULATE MATTER(PM)	IS 11255 PART 1 1985 (R 2019)	mg/Nm ³	46	150
4	CARBON MONOXIDE (CO)		mg/Nm ³	754	NA
5	CARBON DIOXIDE (CO ₂)	CTL/SOP/STACK/10-2016 (Flue Gas Analyser)	%	13.9	NA
6	OXYGEN (O ₂)		%	5.6	NA

Verified by

For Chennai Testing Laboratory Pvt Ltd

- 2

Authorised Signatory

G. MANIKANDAN Head - Environment Division (CHEMICAL)

Page 1 of 2

The Baser and that he was in enough, white end he me matures propose.

The Agent & Sound and Jos and the addresses in a control big for each lockness

CIN: U93000TN2000PTC043869

TEST REPORT

CTL/CH/N-38326/2023-24 & 03.04.2024

SL.NO	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS (as per EC condition)
7	MOISTURE CONTENT	IS 11255 PART 3 2008	%	6.5	NA
8	HYDROGEN SULPHIDE(H ₂ S)	IS 11255 PART 4 2006	mg/Nm ³	7.4	10.0

NA - Not Available

Test Report No & Date

END OF REPORT

Verified by

Authorised Signatory

For Chennai Testing Laboratory Pvt Ltd

-2

Page 2 of 2

The figure produces for the second science, while every the methods are been in the figure of the methods are been as a figure of the second science of th

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	CTL/CH/N-38327/2023-24 & 03.04.2024
Sample Number	N-38327/23-24
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],
Address	Kagithapuram - 639 136,
	Karur District, Tamil Nadu.
Sample Drawn by	Laboratory
Sample Name	Stack Emission
Sample Description	Stack Emission
Sampling Location	Stack attached with Recover Boiler #3
GPS Reading	11°03'13.762''N & 77°59'39.786''E
Sample Drawn on	25.03.2024
Sample Received on	29.03.2024
Sampling Plan & Procedure	CTL/QSP/F-89 & IS 11255
Sample Quantity	1 No
Equipment used for Sampling	Stack Kit 288 DTI 2020
Analysis Started on	29.03.2024
Analysis Completed on	03.04.2024
PHYSICAL PARAMETERS:	
STACK HEIGHT (m)	90
STACK TEMPERATURE (K)	423.0
STACK VELOCITY (m/s)	11.8
STACK GAS FLOW RATE (Nm ³ /hr)	286771.9
DIAMETER OF STACK AT PORTHOLE (m)	3.5
*APCM STATUS AT THE TIME OF SAMPLING	ESP - ON Condition
<u>Test Results:</u>	

The above sample tested as received, and results are as follows:

SL.NO	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS (as per EC condition)
1	OXIDES OF NITROGEN NOx (as NO ₂)	IS 11255 PART 7 2005 (R 2017)	mg/Nm ³	88	300
2	SULPHUR DIOXIDE (SO ₂)	IS 11255 PART 2 1985 (R 2019)	mg/Nm ³	52	600
3	PARTICULATE MATTER(PM)	IS 11255 PART 1 1985 (R 2019)	mg/Nm ³	31.1	150
4	CARBON MONOXIDE (CO)		mg/Nm ³	588	NA
5	CARBON DIOXIDE (CO ₂)	CTL/SOP/STACK/10-2016 (Flue Gas Analyser)	%	13.0	NA
6	OXYGEN (O ₂)		%	6.4	NA

Verified by

For Chennai Testing Laboratory Pvt Ltd

-2

Authorised Signatory

G. MANIKANDAN Head - Environment Division (CHEMICAL)

Page 1 of 2

The Baser and that he was in enough, white end he me matures propose.

The Agent & reason why for our own of the articlement is an even why the matched series

CIN: U93000TN2000PTC043869

www.ctllabs.in

TEST REPORT

Test R	eport No & Date	CTL/CH/N-38327/2023-24 & 03.04.2024			
SL.NO PARAMETERS METHOD UNI				RESULTS	LIMITS (as per EC condition)
7	MOISTURE CONTENT	IS 11255 PART 3 2008	%	4.1	NA

NA - Not Available

HYDROGEN SULPHIDE(H₂S)

END OF REPORT

IS 11255 PART 4 2006

8

Verified by

For Chennai Testing Laboratory Pvt Ltd

10

-2

9

mg/Nm³

Authorised Signatory

Page 2 of 2

The figures produces for our to compare without the descent process. The figure 2 means price to solve our of the activities to process whether our become

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	CTL/CH/N-38321/2023-24 & 03.04.2024				
Sample Number	N-38321/23-24				
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],				
Address	Kagithapuram - 639 136,				
	Karur District, Tamil Nadu.				
Sample Drawn by	Laboratory				
Sample Name	Stack Emission				
Sample Description	Stack Emission				
Sampling Location	Stack attached with Power Boiler-4				
GPS Reading	11°03'21.01''N & 77°59'39.89''E				
Sample Drawn on	25.03.2024				
Sample Received on	29.03.2024				
Sampling Plan & Procedure	CTL/QSP/F-89 & IS 11255				
Sample Quantity	1 No				
Equipment used for Sampling	Stack Kit 288 DTI 2020				
Analysis Started on	29.03.2024				
Analysis Completed on	03.04.2024				
PHYSICAL PARAMETERS:					
STACK HEIGHT (m)	86				
STACK TEMPERATURE (K)	399.0				
STACK VELOCITY (m/s)	9.2				
STACK GAS FLOW RATE (Nm ³ /hr)	198559.1				
DIAMETER OF STACK AT PORTHOLE (m)	3.2				
*APCM STATUS AT THE TIME OF SAMPLING	ESP - ON Condition				

Test Results:

The above sample tested as received, and results are as follows:

SL.NO	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS (as per EC condition)
1	OXIDES OF NITROGEN NOx (as NO ₂)	IS 11255 PART 7 2005 (R 2017)	mg/Nm ³	207	600
2	SULPHUR DIOXIDE (SO ₂)	IS 11255 PART 2 1985 (R 2019)	mg/Nm ³	531	600
3	PARTICULATE MATTER(PM)	IS 11255 PART 1 1985 (R 2019)	mg/Nm ³	34.5	100
4	CARBON MONOXIDE (CO)		mg/Nm ³	653	NA
5	CARBON DIOXIDE (CO ₂)	CTL/SOP/STACK/10-2016 (Flue Gas Analyser)	%	7.0	NA
6	OXYGEN (O ₂)		%	12.7	NA

Verified by

For Chennai Testing Laboratory Pvt Ltd

-.0

Authorised Signatory G. MANIKANDAN Head - Environment Division (CHEMICAL)

Page 1 of 2

The figure photon for the solution of the self-ment of the physical property in the figure of the solution of the solution of the solutions of

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	CTL/CH/N-38321/2023-24 & 03.04.2024

SL.NO	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS (as per EC condition)
7	MOISTURE CONTENT	IS 11255 PART 3 2008	%	1.3	NA
8	TOTAL MERCURY (Hg)	EPA Method 29	mg/Nm ³	BDL(DL:0.01)	NA

*Air Pollution Control Measures

BDL- Below Detection Limit , D.L-Detection Limit, NA - Not Available

END OF REPORT

Verified by

For Chennai Testing Laboratory Pvt Ltd

-.0

Authorised Signatory

Page 2 of 2

The figure photon for the solution of the self-ment of the physical property in the figure of the solution of the solution of the solutions of

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	CTL/CH/N-38322/2023-24 & 03.04.2024				
Sample Number	N-38322/23-24				
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],				
Address	Kagithapuram - 639 136,				
	Karur District, Tamil Nadu.				
Sample Drawn by	Laboratory				
Sample Name	Stack Emission				
Sample Description	Stack Emission				
Sampling Location	Stack attached with Power Boiler-5				
GPS Reading	11°03'16.376''N & 77°59'45.032''E				
Sample Drawn on	25.03.2024				
Sample Received on	29.03.2024				
Sampling Plan & Procedure	CTL/QSP/F-89 & IS 11255				
Sample Quantity	1 No				
Equipment used for Sampling	Stack Kit 288 DTI 2020				
Analysis Started on	29.03.2024				
Analysis Completed on	03.04.2024				
PHYSICAL PARAMETERS:					
STACK HEIGHT (m)	90				
STACK TEMPERATURE (K)	400.0				
STACK VELOCITY (m/s)	8.4				
STACK GAS FLOW RATE (Nm ³ /hr)	181365.4				
DIAMETER OF STACK AT PORTHOLE (m)	3.2				
*APCM STATUS AT THE TIME OF SAMPLING	ESP - ON Condition				

Test Results:

The above sample tested as received, and results are as follows:

SL.NO	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS (as per EC condition)
1	OXIDES OF NITROGEN NOx (as NO ₂)	IS 11255 PART 7 2005 (R 2017)	mg/Nm ³	406	600
2	SULPHUR DIOXIDE (SO ₂)	IS 11255 PART 2 1985 (R 2019)	mg/Nm ³	584	600
3	PARTICULATE MATTER(PM)	IS 11255 PART 1 1985 (R 2019)	mg/Nm ³	37.2	100
4	CARBON MONOXIDE (CO)		mg/Nm ³	132	NA
5	CARBON DIOXIDE (CO ₂)	CTL/SOP/STACK/10-2016 (Flue Gas Analyser)	%	8.6	NA
6	OXYGEN (O ₂)		%	11.0	NA

Verified by

For Chennai Testing Laboratory Pvt Ltd

-.0

Authorised Signatory G. MANIKANDAN Head - Environment Division (CHEMICAL)

Page 1 of 2

The figures and the tax was in comparison with the pay metamor person. The August & Second and for our of the addressed in a terrors in the cash features

CIN: U93000TN2000PTC043869

www.ctllabs.in

TEST REPORT

Test Report No & Date CTL/CH/N-38322/2023-24 & 03.04.2024

SL.NO	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS (as per EC condition)
7	MOISTURE CONTENT	IS 11255 PART 3 2008	%	1.0	NA
8	TOTAL MERCURY (Hg)	EPA Method 29	mg/Nm ³	BDL(DL:0.01)	NA

*Air Pollution Control Measures

BDL- Below Detection Limit , D.L-Detection Limit, NA - Not Available

END OF REPORT

Verified by

For Chennai Testing Laboratory Pvt Ltd

- 0 · M

Authorised Signatory

Page 2 of 2

The figure profession is a set to except which a difference of the star destinant performation figures in bound performance of the artiference in according to the set boundary

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	CTL/CH/N-38323/2023-24 & 03.04.2024
Sample Number	N-38323/23-24
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],
Address	Kagithapuram - 639 136,
	Karur District, Tamil Nadu.
Sample Drawn by	Laboratory
Sample Name	Stack Emission
Sample Description	Stack Emission
Sampling Location	Stack attached with Power Boiler-6
GPS Reading	11°03'10.138''N & 77°59'46.708''E
Sample Drawn on	25.03.2024
Sample Received on	29.03.2024
Sampling Plan & Procedure	CTL/QSP/F-89 & IS 11255
Sample Quantity	1 No
Equipment used for Sampling	Stack Kit 288 DTI 2020
Analysis Started on	29.03.2024
Analysis Completed on	03.04.2024
PHYSICAL PARAMETERS:	
STACK HEIGHT (m)	95
STACK TEMPERATURE (K)	404.0
STACK VELOCITY (m/s)	9.3
STACK GAS FLOW RATE (Nm ³ /hr)	236056.2
DIAMETER OF STACK AT PORTHOLE (m)	3.5
*APCM STATUS AT THE TIME OF SAMPLING	ESP - ON Condition
T+ D 1+-	

Test Results:

The above sample tested as received, and results are as follows:

SL.NO	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS (as per EC condition)
1	OXIDES OF NITROGEN NOx (as NO ₂)	IS 11255 PART 7 2005 (R 2017)	mg/Nm ³	305	450
2	SULPHUR DIOXIDE (SO ₂)	IS 11255 PART 2 1985 (R 2019)	mg/Nm ³	541	600
3	PARTICULATE MATTER(PM)	IS 11255 PART 1 1985 (R 2019)	mg/Nm ³	30.5	50
4	CARBON MONOXIDE (CO)		mg/Nm ³	44	NA
5	CARBON DIOXIDE (CO ₂)	CTL/SOP/STACK/10-2016 (Flue Gas Analyser)	%	10.2	NA
6	OXYGEN (O ₂)		%	9.3	NA

Verified by

For Chennai Testing Laboratory Pvt Ltd

-.0

Authorised Signatory G. MANIKANDAN Head - Environment Division (CHEMICAL)

Page 1 of 2

The figures and the tax was in comparison with the pay metamor person. The August & Second and for our of the addressed in a terrors in the cash features

CIN: U93000TN2000PTC043869

www.ctllabs.in

TEST REPORT

Test Report No & Date CTL/CH/N-38323/2023-24 & 03.04.2024

SL.NO	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS (as per EC condition)
7	MOISTURE CONTENT	IS 11255 PART 3 2008	%	1.2	NA
8	TOTAL MERCURY (Hg)	EPA Method 29	mg/Nm ³	BDL(DL:0.01)	0.03

*Air Pollution Control Measures

BDL- Below Detection Limit , D.L-Detection Limit, NA - Not Available

END OF REPORT

Verified by

For Chennai Testing Laboratory Pvt Ltd

- 0 · M

Authorised Signatory

Page 2 of 2

The figure profession is a set to except which a difference of the star destinant performation figures in bound performance of the artiference in according to the set boundary

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	CTL/CH/N-38324/2023-24 & 03.04.2024
Sample Number	N-38324/23-24
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],
Address	Kagithapuram - 639 136,
	Karur District, Tamil Nadu.
Sample Drawn by	Laboratory
Sample Name	Stack Emission
Sample Description	Stack Emission
Sampling Location	Stack attached with Power Boiler-7
GPS Reading	11°03'8.156''N & 77°59'46.95''E
Sample Drawn on	25.03.2024
Sample Received on	29.03.2024
Sampling Plan & Procedure	CTL/QSP/F-89 & IS 11255
Sample Quantity	1 No
Equipment used for Sampling	Stack Kit 288 DTI 2020
Analysis Started on	29.03.2024
Analysis Completed on	03.04.2024
PHYSICAL PARAMETERS:	
STACK HEIGHT (m)	95
STACK TEMPERATURE (K)	411.0
STACK VELOCITY (m/s)	10.0
STACK GAS FLOW RATE (Nm ³ /hr)	250483.1
DIAMETER OF STACK AT PORTHOLE (m)	3.5
*APCM STATUS AT THE TIME OF SAMPLING	ESP - ON Condition
<u>Test Results:</u>	

The above sample tested as received, and results are as follows:

SL.NO	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS (as per EC condition)
1	OXIDES OF NITROGEN NOx (as NO ₂)	IS 11255 PART 7 2005 (R 2017)	mg/Nm ³	181	450
2	SULPHUR DIOXIDE (SO ₂)	IS 11255 PART 2 1985 (R 2019)	mg/Nm ³	330	600
3	PARTICULATE MATTER(PM)	IS 11255 PART 1 1985 (R 2019)	mg/Nm ³	43.2	50
4	CARBON MONOXIDE (CO)		mg/Nm ³	251	NA
5	CARBON DIOXIDE (CO ₂)	CTL/SOP/STACK/10-2016 (Flue Gas Analyser)	%	11.0	NA
6	OXYGEN (O ₂)		%	8.9	NA

Verified by

For Chennai Testing Laboratory Pvt Ltd

-2

Authorised Signatory

Page 1 of 2

The digness photoset for some in company, without out of the proceeding performance. The dignest is bound performance and of the articlement is proceeding to the source of the source of the source

CIN: U93000TN2000PTC043869

TEST REPORT

CTL/CH/N-38324/2023-24 & 03.04.2024

	-				
SL.NO	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS (as per EC condition)
7	MOISTURE CONTENT	IS 11255 PART 3 2008	%	1.6	NA
8	TOTAL MERCURY (Hg)	EPA Method 29	mg/Nm ³	BDL(DL:0.01)	0.03

*Air Pollution Control Measures

Test Report No & Date

BDL- Below Detection Limit , D.L-Detection Limit, NA - Not Available

END OF REPORT

Verified by

For Chennai Testing Laboratory Pvt Ltd

-.0

Authorised Signatory

Page 2 of 2

The figure profession is a set to except which of the set of the s

ANNEXURE II

ONLINE - AMBIENT AIR QUALITY MONITORING DATA

ATNPL															TAM	ILNADU NEN	SPRINT AND	PAPERS LIN	1ITED
							REAL		IT AIR QUALIT	Y MONITORIN	G STATION D	ATA				1		1	
Date	TNPL CH4	TNPL CHLORINE	TNPL CO_ABT	TNPL H2S	TNPL HCNM	TNPL HCT	TNPL NO	TNPL NO2	TNPL NOX	TNPL PM10	TNPL SO2	TNPL Barometric Pressure	TNPL RAIN	TNPL Relative Humidity	TNPL SOLAR	TNPL TEMP	TNPL Vertcal WS	TNPL Wind Speed	TNPL Wind Direction
	ug/m3	ppm	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	mmHg	mm	*	W/m2	degree C	m/s	m/s	degree
									Oct-	23									
01-10-2023	2.87	0.00	457.7	3.2	2.77	3.27	10.14	12.64	18.64	23.45	3.04	753	0.0	62.5	20.7	33.3	0.08	2.48	201.45
02-10-2023	2.05	0.00	457.1	3.4	1.95	2.45	10.27	12.77	18.77	24.09	3.18	753	0.0	62.7	21.8	33.5	0.09	1.34	214.36
03-10-2023	1.23	0.00	436.8	3.5	1.13	1.63	10.34	12.84	18.84	36.32	3.26	753	0.0	62.8	23.4	33.7	0.10	1.59	147.59
04-10-2023	1.33	0.00	444.6	3.6	1.22	1.75	9.96	13.02	19.02	32.44	3.26	756	0.0	63.2	22.8	34.1	0.08	1.26	124.56
05-10-2023	1.33	0.00	462.6	3.8	1.23	1.73	10.57	13.07	19.07	34.62	6.47	757	0.0	63.2	25.1	34.2	0.08	3.14	190.24
06-10-2023	1.26	0.00	488.2	3.8	1.16	1.66	10.51	13.01	19.01	31.26	11.52	757	0.0	63.1	24.7	34.0	0.08	2.15	223.64
07-10-2023	1.48	0.00	415.5	3.8	1.38	1.88	10.56	13.06	19.06	34.08	10.25	762	0.0	63.2	23.3	34.1	0.08	2.84	184.26
08-10-2023	1.33	0.00	299.8	4.3	1.23	1.73	10.86	13.36	19.36	40.58	7.46	762	0.0	63.7	20.1	34.7	0.08	3.69	182.17
09-10-2023	1.30	0.00	316.9	3.5	1.20	1.70	10.37	12.87	18.87	37.71	7.45	762	0.0	62.9	23.4	33.8	0.07	4.15	169.48
10-10-2023	1.15	0.00	360.2	2.9	1.05	1.55	9.98	12.48	18.48	38.01	8.41	762	0.0	62.2	42.7	33.0	0.08	0.48	144.26
11-10-2023	1.29	0.00	345.0	2.9	1.19	1.69	9.96	12.46	18.46	37.22	8.37	762	0.0	62.2	26.5	32.9	0.08	2.48	254.3
12-10-2023	1.08	0.00	316.2	3.2	0.98	1.48	10.13	12.63	18.63	38.97	8.57	757	0.0	62.5	25.5	33.3	0.08	1.84	274.68
13-10-2023	1.64	0.00	339.6	3.6	1.28	2.34	10.17	12.95	20.12	44.13	8.73	753	0.3	63.2	17.1	34.1	0.09	4.21	96.48
14-10-2023	2.42	0.00	319.7	3.6	1.90	3.46	11.02	13.31	21.06	50.88	8.89	754	1.7	63.0	15.9	33.8	0.14	5.48	174.23
15-10-2023	1.18	0.00	327.4	2.4	1.08	1.58	9.66	12.16	18.16	39.07	8.03	753	0.0	61.7	70.0	32.3	0.27	6.14	214.23
16-10-2023	1.54	0.00	331.8	2.7	1.44	1.94	9.82	12.32	18.32	37.77	8.21	753	0.0	62.0	24.7	32.7	0.20	0.66	104.25
17-10-2023	1.18	0.00	343.7	2.6	1.08	1.58	9.66	12.16	18.16	62.89	8.04	753	9.5	61.7	38.3	32.3	0.08	1.49	100.47
18-10-2023	0.91	0.00	345.3	2.8	0.81	1.31	9.36	11.86	17.86	53.38	7.69	753	0.0	61.2	27.9	31.7	0.09	0.38	178.25
19-10-2023	1.21	0.00	374.8	3.9	1.11	1.61	10.65	13.15	19.15	31.95	7.83	753	3.3	63.4	24.6	34.3	0.08	0.48	180.24
20-10-2023	1.08	0.00	510.7	3.3	0.98	1.48	10.21	12.71	18.71	56.48	3.96	753	5.1	62.6	20.1	33.4	0.08	3.2	171.25
21-10-2023	1.19	0.00	513.2	3.1	1.09	1.59	10.09	12.59	18.59	67.35	3.84	753	0.0	62.4	17.8	33.2	0.08	2.47	164.29
22-10-2023	1.08	0.00	510.1	2.9	0.98	1.48	9.98	12.48	18.48	57.68	3.71	753	0.0	62.2	17.2	33.0	0.09	3.16	163.48
23-10-2023	1.24	0.00	527.4	3.2	1.14	1.64	10.14	12.64	18.64	46.41	3.88	753	0.0	62.5	15.8	33.3	0.08	2.55	150.24
24-10-2023	1.08	0.00	524.6	3.0	0.98	1.48	10.03	12.53	18.53	33.22	3.78	753	0.0	62.3	17.9	33.1	0.08	2.45	174.56
25-10-2023	1.40	0.00	491.9	3.4	1.30	1.80	10.31	12.81	18.81	95.31	4.08	754	0.0	62.8	18.4	33.6	0.08	1.14	245.68
26-10-2023	1.35	0.00	482.6	3.5	1.25	1.75	10.35	12.85	18.85	91.24	4.12	760	0.0	62.9	18.5	33.7	0.08	0.97	202.4
27-10-2023	1.31	0.00	502.6	4.1	1.21	1.71	10.73	13.23	19.23	95.97	4.54	762	0.0	63.5	19.0	34.5	0.08	1.69	198.5
28-10-2023	1.44	0.00	450.7	4.3	1.34	1.84	10.90	13.40	19.40	82.70	16.03	762	0.0	63.8	17.6	34.8	0.10	3.45	194.36
29-10-2023	1.09	0.00	359.4	2.5	0.99	1.49	9.72	12.22	18.22	119.23	42.61	762	0.0	61.8	14.2	32.5	0.12	2.69	164.28
30-10-2023	1.55	0.00	427.9	3.5	1.45	1.95	10.39	12.89	18.89	27.19	21.14	762	0.0	62.9	16.8	33.8	0.08	2.14	174.58
31-10-2023	1.33	0.00	482.6	3.5	1.23	1.73	10.32	12.82	18.82	55.17	7.76	762	4.1	62.8	16.0	33.7	0.08	3.14	164.28
мілімим	0.9	0.0	299.8	2.4	0.8	1.3	9.4	11.9	17.9	23.5	3.0	753.0	0.0	61.2	14.2	31.7	0.1	0.4	96.5
MAXIMUM	2.9	0.0	527.4	4.3	2.8	3.5	11.0	13.4	21.1	119.2	42.6	762.0	9.5	63.8	70.0	34.8	0.3	6.1	274.7
AVERAGE	1.4	0.0	418.3	3.3	1.3	1.8	10.2	12.8	18.8	50.2	8.3	756.7	0.8	62.7	23.5	33.5	0.1	2.4	178.3

ATNPL															TAM	ILNADU NEV	VSPRINT AND	PAPERS LIN	AITED
							REAL		IT AIR QUALIT		IG STATION D	ATA						•	
Date	TNPL CH4	TNPL CHLORINE	TNPL CO_ABT	TNPL H2S	TNPL HCNM	TNPL HCT	TNPL NO	TNPL NO2	TNPL NOX	TNPL PM10	TNPL SO2	TNPL Barometric Pressure	TNPL RAIN	TNPL Relative Humidity	TNPL	TNPL TEMP	TNPL Vertcal WS	TNPL Wind Speed	TNPL Wind Direction
	ug/m3	ppm	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	mmHg	mm	%	W/m2	degree C	m/s	m/s	degree
								-	Nov	-23			-				-		-
01-11-2023	1.09	0.00	498.7	3.2	0.99	1.49	10.18	12.68	18.68	43.50	7.59	762	12.1	62.6	13.8	33.4	0.08	2.48	144.26
02-11-2023	1.13	0.00	494.6	3.9	1.03	1.53	10.59	13.09	19.09	43.15	8.06	765	0.0	63.3	29.2	34.2	0.08	1.84	69.48
03-11-2023	1.19	0.00	481.3	4.0	1.09	1.59	10.66	13.16	19.16	51.85	8.14	764	3.6	63.4	14.8	34.3	0.08	4.21	189.4
04-11-2023	1.22	0.00	461.0	3.4	1.12	1.62	10.27	12.77	18.77	45.75	7.68	762	32.8	62.7	19.8	33.5	0.09	3.64	274.3
05-11-2023	1.09	0.00	468.9	3.4	0.99	1.49	10.26	12.76	18.76	35.45	7.68	771	2.0	62.7	35.0	33.5	0.07	6.14	162.4
06-11-2023	1.40	0.00	380.5	4.3	1.30	1.80	10.89	13.39	19.39	31.12	6.43	753	0.5	63.8	19.9	34.8	0.08	5.49	214.23
07-11-2023	1.26	0.00	338.9	3.5	1.16	1.66	10.33	12.83	18.83	61.62	4.32	746	12.2	62.8	13.9	33.7	0.08	6.18	104.25
08-11-2023	1.42	0.00	327.3	3.5	1.32	1.82	10.38	12.88	18.88	81.52	4.36	753	8.9	62.9	36.9	33.8	0.08	4.21	100.47
09-11-2023	1.08	0.00	347.4	2.1	0.98	1.48	9.40	11.90	17.90	105.42	3.32	754	50.4	61.2	15.6	31.8	0.08	2.48	169.48
10-11-2023	1.07	0.00	410.9	1.9	0.97	1.47	8.98	11.48	17.48	22.88	8.73	754	0.0	60.5	25.2	31.0	0.09	3.2	164.29
11-11-2023	1.07	0.00	458.8	3.0	0.97	1.47	10.01	12.51	18.51	34.82	12.48	754	0.0	62.3	14.5	33.0	0.12	2.48	163.48
12-11-2023	1.00	0.00	521.3	2.8	0.90	1.40	9.68	12.18	18.18	162.55	9.22	755	0.0	61.7	14.6	32.4	0.08	1.84	150.24
13-11-2023	0.96	0.00	543.5	2.6	0.86	1.36	9.73	12.23	18.11	78.39	9.27	753	14.7	61.8	15.8	32.2	0.08	4.21	174.56
14-11-2023	0.94	0.00	523.8	1.6	0.84	1.34	9.07	11.57	17.57	45.54	8.49	753	17.4	60.7	22.4	31.2	0.07	5.48	174.23
15-11-2023	1.12	0.00	539.5	2.6	1.02	1.52	9.75	12.25	18.25	54.21	9.30	753	0.0	61.8	15.6	32.5	0.08	6.14	214.23
16-11-2023	1.15	0.00	392.1	3.1	1.05	1.55	10.08	12.58	18.58	59.21	7.72	753	0.0	62.4	16.8	33.2	0.09	0.66	104.25
17-11-2023	1.25	0.00	306.0	3.8	1.15	1.65	10.55	13.05	19.05	69.25	7.10	753	0.0	63.2	16.4	34.1	0.08	1.49	100.47
18-11-2023	1.05	0.00	312.9	3.7	0.95	1.45	10.49	12.99	18.99	40.75	7.03	753	0.0	63.1	13.4	34.0	0.08	0.38	178.25
19-11-2023	1.13	0.00	335.2	3.7	1.03	3.83	10.23	11.36	19.56	36.88	5.00	753	0.0	63.1	14.2	34.0	0.07	0.48	180.24
20-11-2023	1.25	0.00	377.9	3.9	1.15	5.85	10.09	10.09	20.09	37.21	4.93	753	0.0	63.3	15.5	34.2	0.08	3.2	171.25
21-11-2023	1.36	0.00	373.9	4.9	1.26	5.96	10.76	10.76	20.76	63.45	7.74	753	0.0	64.4	15.7	35.5	0.08	2.47	164.29
22-11-2023	1.51	0.00	412.3	4.4	1.41	6.11	10.47	10.47	20.47	75.22	8.84	754	21.2	63.9	14.4	34.9	0.14	3.16	163.48
23-11-2023	1.73	0.00	407.1	2.9	1.63	5.28	9.46	9.46	19.46	61.30	7.15	753	0.0	62.2	23.5	32.9	0.20	0.66	150.24
24-11-2023	1.42	0.00	430.8	4.0	1.32	4.12	10.16	10.16	20.16	58.17	7.57	753	0.0	63.4	15.4	34.3	0.09	1.49	174.56
25-11-2023	1.17	0.00	455.9	3.1	1.07	3.87	9.59	9.59	19.59	51.17	6.92	753	0.0	62.4	15.1	33.2	0.09	0.38	245.68
26-11-2023	1.00	0.00	465.4	2.2	0.90	3.70	9.02	9.02	19.02	42.94	6.28	753	0.0	61.4	10.2	32.0	0.10	0.97	202.4
27-11-2023	1.23	0.00	410.2	3.4	1.13	3.93	9.40	9.40	19.40	48.91	5.26	753	0.0	62.1	17.2	32.8	0.09	1.69	198.5
28-11-2023	0.88	0.00	438.2	2.1	0.78	3.58	8.95	8.95	18.95	37.38	6.45	753	4.3	61.3	20.4	31.9	0.09	3.45	194.36
29-11-2023	1.20	0.00	501.0	2.7	1.10	3.90	9.36	9.36	19.36	50.00	7.78	753	0.0	62.0	18.3	32.7	0.08	2.69	164.28
30-11-2023	1.06	0.00	544.5	1.8	0.96	3.76	8.72	8.72	18.72	34.23	6.38	753	2.6	60.9	13.5	31.5	0.08	2.14	174.58
MINIMUM	0.9	0.0	306.0	1.6	0.8	1.3	8.7	8.7	17.5	22.9	3.3	746.0	0.0	60.5	10.2	31.0	0.1	0.4	69.5
MAXIMUM	1.7	0.0	544.5	4.9	1.6	6.1	10.9	13.4	20.8	162.6	12.5	771.0	50.4	64.4	36.9	35.5	0.2	6.2	274.3
AVERAGE	1.2	0.0	432.0	3.2	1.1	2.7	9.9	11.5	19.0	55.5	7.2	754.9	6.1	62.4	18.2	33.2	0.1	2.8	167.9

01-12-2023 0 02-12-2023 0 03-12-2023 1 04-12-2023 1	TNPL CH4 ug/m3 0.89 0.90 1.15 1.65 2.38 2.42 1.42	TNPL CHLORINE ppm 0.00 0.00 0.00 0.00 0.00	TNPL CO_ABT ug/m3 438.7 345.3	TNPL H2S ug/m3 2.6	TNPL HCNM ug/m3	TNPL HCT	REAL TNPL NO	TNPL		Y MONITORIN	G STATION D										
01-12-2023 0 02-12-2023 0 03-12-2023 1 04-12-2023 1	CH4 ug/m3 0.89 0.90 1.15 1.65 2.38	CHLORINE ppm 0.00 0.00 0.00	co_ABT ug/m3 438.7	H2S ug/m3	HCNM	нст															
01-12-2023 0 02-12-2023 0 03-12-2023 1 04-12-2023 1	0.89 0.90 1.15 1.65 2.38	0.00 0.00 0.00	438.7		ug/m3			NOZ	NOX			Barometric									
02-12-2023 0 03-12-2023 1 04-12-2023 1	0.90 1.15 1.65 2.38	0.00		2.6		ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	mmHg	mm	×	W/m2	degree C	m/s	m/s	degree		
02-12-2023 0 03-12-2023 1 04-12-2023 1	0.90 1.15 1.65 2.38	0.00		2.6					Dec	23											
03-12-2023 1 04-12-2023 1	1.15 1.65 2.38	0.00	345.3	2.0	0.79	3.59	7.87	9.02	19.02	40.46	4.32	753	0.00	61.5	14.6	32.1	0.09	0.99	212.3		
04-12-2023 1	1.65 2.38			2.7	0.80	3.60	6.58	8.59	17.24	53.70	2.94	753	0.00	59.6	12.4	31.1	0.08	2.15	154.26		
	2.38	0.00	328.8	2.3	1.05	3.85	4.52	6.52	11.52	36.90	3.27	753	0.00	57.2	12.8	27.1	0.08	0.63	241.36		
05-12-2023 2		0.00	334.5	1.9	1.19	4.01	3.44	5.39	9.47	38.86	3.23	754	0.00	62.8	12.9	27.9	0.08	1.68	178.25		
	2.42	0.00	327.8	5.7	1.25	4.25	4.82	6.37	8.31	62.47	3.07	758	0.02	73.3	12.9	29.2	0.13	1.21	155.36		
06-12-2023 2	2.42	0.00	332.6	7.1	1.45	4.92	7.45	9.12	14.54	65.81	4.05	757	0.00	70.3	21.7	30.2	0.08	3.24	124.17		
07-12-2023 1	1.43	0.00	354.4	7.1	3.52	5.36	7.55	10.14	18.24	57.35	5.20	756	0.01	72.9	12.4	30.1	0.08	2.15	182.17		
08-12-2023 2	2.39	0.00	331.3	5.7	4.34	6.79	7.54	8.86	16.64	59.67	5.63	758	0.00	72.8	28.1	29.6	0.08	2.36	178.63		
09-12-2023 2	2.85	0.00	367.7	5.1	4.56	7.84	7.24	9.05	16.91	66.22	6.42	756	0.00	74.6	12.9	29.3	0.07	2.16	187.4		
10-12-2023 3	3.28	0.00	340.8	5.3	3.98	7.58	7.48	9.30	17.29	56.31	6.80	757	0.00	74.6	15.8	29.4	0.22	0.99	195.47		
11-12-2023 2	2.87	0.00	314.7	4.7	3.88	7.02	7.87	7.92	15.70	83.34	6.53	758	0.00	74.1	10.9	28.7	0.21	3.24	187.45		
12-12-2023 2	2.80	0.00	341.6	4.5	3.61	6.97	8.14	8.31	17.11	58.15	5.29	757	0.00	73.2	12.0	28.3	0.07	1.32	150.24		
13-12-2023 3	3.70	0.00	329.5	4.1	3.98	8.31	7.66	8.29	16.92	51.23	4.70	758	0.00	74.6	7.9	27.8	0.07	2.15	164.25		
14-12-2023 4	4.73	0.00	335.9	4.7	2.86	7.56	6.15	6.95	15.26	44.62	7.26	756	0.01	73.9	15.1	28.5	0.08	0.99	134.2		
15-12-2023 3	3.05	0.00	348.1	4.4	2.98	6.33	7.40	7.84	16.29	59.93	5.89	757	0.00	73.5	7.7	28.3	0.14	4.15	159.84		
16-12-2023 4	4.51	0.00	322.0	6.6	5.26	7.26	10.51	10.82	19.20	54.97	7.05	758	0.00	73.3	8.8	31.3	0.08	1.51	204.83		
17-12-2023 4	4.42	0.00	299.9	6.1	5.17	7.17	9.79	10.21	18.57	35.61	6.62	756	0.00	73.1	6.5	31.2	0.08	2.31	189.4		
18-12-2023 3	3.77	0.00	354.7	4.8	4.97	7.35	8.33	9.00	17.31	41.97	4.70	756	0.00	74.9	7.8	29.4	0.08	1.51	241.3		
19-12-2023 4	4.65	0.00	275.2	5.3	5.10	7.75	8.07	8.69	17.41	66.04	5.72	755	0.00	72.5	16.9	30.1	0.08	2.31	203.24		
20-12-2023 4	4.53	0.00	333.0	5.2	4.92	7.93	7.99	8.29	16.81	65.40	4.03	758	0.00	74.3	10.4	29.5	0.08	2.36	178.69		
21-12-2023 3	3.29	0.00	361.8	4.7	4.00	7.58	8.16	8.42	17.51	61.91	5.25	756	0.00	73.3	15.1	28.5	0.09	2.48	127.45		
22-12-2023 3	3.50	0.00	375.2	5.2	3.35	5.98	8.95	9.36	19.10	71.47	4.80	756	0.00	73.7	16.0	29.3	0.09	1.96	152.48		
23-12-2023 1	1.90	0.00	338.5	4.7	1.87	3.81	8.17	8.48	17.96	74.88	4.40	757	0.00	73.9	12.3	28.6	0.08	2.15	124.17		
24-12-2023 1	1.96	0.00	423.4	4.4	1.75	4.01	6.17	7.26	16.93	73.39	4.62	756	0.00	75.5	9.1	28.1	0.08	1.43	214.26		
25-12-2023 1	1.77	0.00	395.3	5.6	1.67	3.47	6.97	8.07	17.41	42.17	5.31	757	0.01	74.7	29.5	29.8	0.07	2.15	208.54		
26-12-2023 2	2.25	0.00	349.4	5.3	2.89	3.51	7.90	7.93	18.07	42.79	4.45	757	0.00	75.4	15.8	29.3	0.08	2.15	161.24		
27-12-2023 3	3.16	0.00	322.1	5.0	4.26	5.93	8.19	7.54	16.91	41.31	4.37	756	0.00	74.6	18.5	29.3	0.08	1.26	184.57		
28-12-2023 3	3.60	0.00	310.1	5.8	3.36	4.80	7.64	8.27	17.57	54.09	4.28	758	0.00	74.9	13.4	30.0	0.08	4.26	187.45		
29-12-2023 3	3.68	0.00	351.5	5.5	2.44	5.12	7.96	8.71	17.25	53.22	4.22	758	0.00	74.1	10.7	29.6	0.09	0.83	164.25		
30-12-2023 3	3.16	0.00	366.0	5.0	2.84	6.44	8.73	9.08	18.12	52.04	5.93	755	0.00	73.8	14.6	29.0	0.08	2.1	165.28		
31-12-2023 2	2.73	0.00	385.9	5.0	3.33	6.93	7.73	8.73	18.93	72.50	7.48	757	0.00	74.1	8.5	28.9	0.08	2.15	254.16		
MINIMUM	0.9	0.0	275.2	1.9	0.8	3.5	3.4	5.4	8.3	35.6	2.9	753.0	0.0	57.2	6.5	27.1	0.1	0.6	124.2		
MAXIMUM	4.7	0.0	423.4	7.1	5.3	8.3	10.5	10.8	19.2	83.3	7.5	758.0	0.0	75.5	29.5	31.3	0.2	4.3	254.2		
AVERAGE	2.9	0.0	343.2	5.0	3.2	6.0	7.5	8.4	16.6	56.6	5.1	756.5	0.0	72.5	13.6	29.2	0.1	2.0	178.5		

AINPL															TAM	ILNADU NEN	SPRINT AND	PAPERS LIN	AITED
		1					REAL		IT AIR QUALIT		G STATION D	ТА				1		1	
Date	TNPL CH4	TNPL CHLORINE	TNPL CO_ABT	TNPL H2S	TNPL HCNM	TNPL HCT	TNPL NO	TNPL NO2	TNPL NOX	TNPL PM10	TNPL SO2	TNPL Barometric Pressure	TNPL RAIN	TNPL Relative Humidity	TNPL SOLAR	TNPL TEMP	TNPL Vertcal WS	TNPL Wind Speed	TNPL Wind Direction
	ug/m3	ppm	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	mmHg	mm	*	W/m2	degree C	m/s	m/s	degree
									Jan-	24			-						
01-01-2024	2.67	0.00	371.1	4.9	3.27	6.87	7.68	8.67	18.87	73.79	7.66	757	0.00	73.6	8.7	28.8	0.08	1.59	144.26
02-01-2024	3.47	0.00	353.6	5.0	3.83	7.36	7.44	8.76	17.33	79.84	5.80	758	0.00	73.5	22.2	28.9	0.08	2.15	69.48
03-01-2024	3.23	0.00	323.7	4.9	3.24	7.99	6.33	7.50	15.25	66.86	5.65	757	0.00	73.5	11.8	28.8	0.08	1.05	154.2
04-01-2024	2.68	0.00	330.8	5.2	3.26	6.54	7.87	7.02	16.90	64.43	6.01	756	0.00	72.7	9.7	29.2	0.11	2.15	231.59
05-01-2024	2.87	0.00	375.5	4.7	4.24	5.44	7.64	6.83	16.12	46.04	4.62	757	0.03	73.5	22.5	28.7	0.08	4.59	124.58
06-01-2024	3.24	0.00	375.3	5.6	4.74	5.94	9.14	7.81	16.96	58.66	5.04	756	0.00	72.9	13.3	29.7	0.10	3.26	201.59
07-01-2024	2.61	0.00	331.2	4.8	4.61	5.81	9.01	6.81	15.91	36.87	7.33	757	0.00	72.8	14.7	29.4	0.08	1.26	104.25
08-01-2024	2.28	0.00	309.1	4.7	4.28	5.48	8.93	8.23	17.02	32.17	5.44	758	0.00	72.8	8.1	28.8	0.10	2.15	120.59
09-01-2024	3.48	0.00	298.9	4.1	3.76	7.16	8.88	9.33	18.35	22.35	5.18	757	0.11	73.5	15.2	27.7	0.08	1.78	169.58
10-01-2024	4.55	0.00	334.2	4.7	3.81	8.42	9.07	9.57	18.34	50.57	6.03	758	0.00	70.1	32.2	28.5	0.10	3.2	210.48
11-01-2024	3.75	0.00	355.7	5.4	3.26	7.83	8.02	8.33	16.98	49.24	7.24	757	0.00	71.6	23.9	29.5	0.10	1.59	163.48
12-01-2024	2.66	0.00	360.3	4.9	2.46	7.46	6.87	6.66	15.55	59.84	4.86	756	0.00	71.7	16.9	28.7	0.10	3.26	195.48
13-01-2024	2.56	0.00	334.8	4.7	2.36	7.36	7.80	7.70	15.85	55.72	4.40	758	0.00	73.6	15.7	28.5	0.08	4.21	215.48
14-01-2024	2.76	0.00	345.1	5.0	2.56	7.56	9.06	9.06	16.86	62.16	5.18	756	0.00	73.1	15.6	28.9	0.13	4.26	245.2
15-01-2024	2.65	0.00	338.7	4.8	2.45	7.45	8.95	8.95	16.75	65.01	5.89	757	0.00	73.6	18.1	28.7	0.14	6.14	214.23
16-01-2024	2.85	0.00	344.4	5.1	2.65	7.65	9.15	9.15	16.95	58.90	5.33	757	0.00	73.8	17.5	29.1	0.17	0.66	103.26
17-01-2024	2.73	0.00	343.3	5.0	2.53	7.53	9.04	9.03	16.83	49.66	5.59	756	0.00	73.4	17.7	28.9	0.17	2.48	198.47
18-01-2024	3.65	0.00	389.5	5.1	3.57	7.33	8.52	8.58	16.38	65.35	6.12	757	0.00	73.7	18.5	29.1	0.09	2.69	165.24
19-01-2024	3.86	0.00	370.4	5.2	3.86	7.42	7.84	7.93	16.01	63.81	6.19	757	0.00	72.5	18.0	29.3	0.10	1.26	180.24
20-01-2024	4.20	0.00	321.6	5.0	3.88	7.86	8.22	8.50	17.26	50.58	5.02	758	0.00	73.5	14.4	29.4	0.10	3.69	171.25
21-01-2024	4.52	0.00	383.3	5.2	4.77	8.17	9.47	9.77	18.69	55.23	5.81	756	0.00	74.2	18.2	29.8	0.32	1.48	195.48
22-01-2024	5.06	0.00	328.5	5.5	4.66	8.06	9.36	9.66	18.06	58.77	5.99	756	0.00	71.9	19.2	29.5	0.11	3.29	163.48
23-01-2024	4.19	0.00	337.7	5.2	3.85	7.25	8.49	8.73	16.57	64.78	6.13	757	0.00	71.6	19.1	29.2	0.10	0.54	150.24
24-01-2024	3.96	0.00	355.6	5.4	3.66	7.06	8.27	8.46	15.96	81.60	6.42	756	0.00	73.9	19.3	29.5	0.07	1.49	174.56
25-01-2024	3.38	0.00	327.7	4.0	3.18	6.30	8.16	8.32	17.09	63.65	5.46	756	0.00	72.0	23.9	29.8	0.14	0.38	195.48
26-01-2024	3.50	0.00	341.4	4.7	3.28	7.03	10.36	10.59	20.98	53.91	5.60	755	0.00	64.2	19.2	30.1	0.32	2.15	202.4
27-01-2024	4.32	0.00	299.2	6.0	4.19	7.44	9.06	9.33	18.12	54.34	6.19	754	0.00	70.2	20.4	30.1	0.15	1.69	155.2
28-01-2024	4.18	0.00	326.7	5.8	3.88	7.28	8.48	8.68	16.18	57.47	6.05	758	0.00	73.4	17.7	30.0	0.11	3.45	194.36
29-01-2024	2.93	0.00	362.7	5.6	2.14	5.30	7.56	8.65	15.76	59.33	5.16	756	0.00	70.6	31.2	29.2	0.08	4.78	201.59
30-01-2024	3.19	0.00	333.1	5.5	3.67	6.03	8.22	9.50	16.88	64.20	5.95	757	0.00	69.9	44.8	28.8	0.08	2.14	174.58
31-01-2024	4.12	0.00	268.7	6.1	4.12	7.72	9.42	10.42	18.12	61.86	6.84	756	0.00	71.4	42.1	29.7	0.08	3.26	124.59
мінімим	2.3	0.0	268.7	4.0	2.1	5.3	6.3	6.7	15.3	22.4	4.4	754.0	0.0	64.2	8.1	27.7	0.1	0.4	69.5
MAXIMUM	5.1	0.0	389.5	6.1	4.8	8.4	10.4	10.6	21.0	81.6	7.7	758.0	0.1	74.2	44.8	30.1	0.3	6.1	245.2
AVERAGE	3.4	0.0	341.0	5.1	3.5	7.1	8.5	8.6	17.1	57.6	5.8	756.7	0.0	72.3	19.7	29.2	0.1	2.5	171.4

TNPL															TAM	ILNADU NEV	SPRINT AND	PAPERS LIN	AITED
							REAL		NT AIR QUALIT		IG STATION D	ATA			_				
Date	TNPL CH4	TNPL CHLORINE	TNPL CO_ABT	TNPL H2S	TNPL HCNM	TNPL HCT	TNPL NO	TNPL NO2	TNPL NOX	TNPL PM10	TNPL SO2	TNPL Barometric Pressure	TNPL RAIN	TNPL Relative Humidity	TNPL SOLAR	TNPL TEMP	TNPL Vertcal WS	TNPL Wind Speed	TNPL Wind Direction
	ug/m3	ppm	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	mmHg	mm	%	W/m2	degree C	m/s	m/s	degree
									Feb	-24									
01-02-2024	4.63	0.00	338.1	6.9	4.63	8.23	9.25	10.37	18.01	62.61	6.18	757	0.00	71.3	41.2	30.7	0.09	1.03	121.5
02-02-2024	4.65	0.00	369.9	7.0	4.72	8.32	8.92	10.12	17.72	67.10	6.04	756	0.00	70.2	42.5	30.8	0.09	1.105	155.42
03-02-2024	4.57	0.00	385.5	6.8	4.57	8.17	8.77	9.97	17.57	70.24	5.93	755	0.00	71.5	43.0	30.5	0.20	1.23	162.95
04-02-2024	4.24	0.00	372.4	6.3	4.24	7.84	8.44	9.64	17.24	63.89	5.93	757	0.00	69.9	44.2	29.9	0.07	1.13	181.87
05-02-2024	3.96	0.00	380.6	5.9	3.96	7.56	8.79	9.92	17.96	54.18	6.19	756	0.00	71.3	43.9	29.3	0.08	1.04	174.68
06-02-2024	3.80	0.00	383.1	5.7	3.80	7.40	9.01	10.10	18.40	56.43	7.09	757	0.00	70.4	42.4	29.0	0.09	0.96	171.8
07-02-2024	3.79	0.00	362.2	6.1	3.99	7.01	9.04	10.09	18.22	69.22	7.03	755	0.00	72.5	40.3	29.6	0.08	1.11	162.09
08-02-2024	3.08	0.00	328.7	6.2	3.78	5.38	8.48	9.38	17.08	70.10	7.88	754	0.00	71.1	27.8	29.8	0.08	1.14	161.38
09-02-2024	3.21	0.00	313.3	6.4	3.91	5.51	8.61	9.51	17.21	84.38	8.61	750	0.00	73.2	29.0	30.0	0.09	1.21	131.28
10-02-2024	3.06	0.00	297.8	6.2	3.76	5.36	8.47	9.36	17.06	90.08	8.46	754	0.00	74.0	27.1	29.7	0.07	1.11	146.25
11-02-2024	2.96	0.00	297.3	6.0	3.66	5.26	8.36	9.26	16.96	52.02	7.79	756	0.00	70.9	27.6	29.5	0.07	1.27	146.93
12-02-2024	3.72	0.00	336.0	5.8	4.05	5.59	8.82	9.34	17.72	67.43	5.64	756	0.00	70.4	29.3	29.2	0.08	1.23	153.13
13-02-2024	4.61	0.00	362.2	6.3	4.71	6.21	9.51	9.81	18.61	62.55	5.10	756	0.00	69.0	28.3	29.8	0.07	1.09	151.71
14-02-2024	3.91	0.00	393.0	6.3	4.75	6.98	10.29	10.40	19.26	61.18	6.21	756	0.00	69.0	26.4	29.9	0.07	1.17	154.67
15-02-2024	3.18	0.00	398.3	5.9	4.48	7.18	10.48	10.48	19.38	60.68	6.81	755	0.00	69.9	28.0	29.4	0.07	1.27	142.31
16-02-2024	4.18	0.00	349.2	6.1	4.17	6.87	9.86	9.67	18.76	60.94	6.08	756	0.00	68.4	28.0	29.6	0.07	1.13	153.83
17-02-2024	4.88	0.00	333.5	6.4	4.08	6.78	9.58	9.28	18.48	61.70	6.83	755	0.00	69.7	29.0	30.0	0.10	1.21	167.21
18-02-2024	5.12	0.00	363.7	6.7	4.32	7.02	9.82	9.52	18.72	64.05	7.76	756	0.00	69.4	29.8	30.5	0.12	1.13	153.23
19-02-2024	5.12	0.00	378.4	6.7	4.32	7.02	9.82	9.52	18.72	69.81	7.24	756	0.00	69.8	28.7	30.4	0.11	1.24	136.73
20-02-2024	5.63	0.00	390.9	6.9	4.09	7.57	9.44	9.34	18.29	65.17	6.60	756	0.00	69.2	28.3	30.7	0.10	1.42	113.66
21-02-2024	6.53	0.00	422.9	7.4	3.93	8.53	9.06	9.23	17.83	57.13	6.44	756	0.00	70.1	26.8	31.3	0.18	1.27	127.82
22-02-2024	7.11	0.00	393.0	8.2	4.51	9.11	9.64	9.81	18.41	70.17	6.36	756	0.00	70.2	27.6	32.4	0.20	1.15	137.84
23-02-2024	7.26	0.00	393.9	8.5	4.66	9.26	9.79	9.96	18.56	67.37	5.62	752	0.00	70.4	28.2	32.7	0.10	1.27	175.07
24-02-2024	7.28	0.00	373.2	8.5	4.68	9.28	9.81	9.98	18.58	64.85	5.72	755	0.00	70.1	26.7	32.8	0.12	1.49	137.56
25-02-2024	7.06	0.00	370.0	8.2	4.46	9.06	9.60	9.76	18.36	69.41	5.86	755	0.00	69.1	27.2	32.3	0.12	1.34	125.13
26-02-2024	6.93	0.00	361.7	8.0	4.33	8.93	9.20	8.96	18.04	54.22	5.41	756	0.00	71.1	27.0	32.1	0.11	1.3	129.38
27-02-2024	7.77	0.00	316.0	9.2	5.17	9.77	9.38	8.07	18.37	63.09	6.15	757	0.00	69.9	27.2	33.8	0.10	1.3	150.78
28-02-2024	8.95	0.00	331.5	11.0	6.35	10.95	10.56	9.25	19.55	57.90	6.35	755	0.00	70.4	28.4	36.1	0.09	1.13	158.97
29-02-2024	9.12	0.00	325.8	11.0	6.19	10.50	10.22	9.71	19.30	65.88	6.44	757	0.00	72.4	28.9	36.0	0.09	1.18	155.37
MINIMUM	3.0	0.0	297.3	5.7	3.7	5.3	8.4	8.1	17.0	52.0	5.1	750.0	0.0	68.4	26.4	29.0	0.1	1.0	113.7
MAXIMUM	9.1	0.0	422.9	11.0	6.4	11.0	10.6	10.5	19.6	90.1	8.6	757.0	0.0	74.0	44.2	36.1	0.2	1.5	181.9
AVERAGE	5.2	0.0	359.4	7.1	4.4	7.7	9.3	9.6	18.2	65.0	6.5	755.4	0.0	70.5	31.5	31.0	0.1	1.2	149.7

ATNPL															TAM	INADU NEN	SPRINT AND	PAPERS LIN	1ITED
							REAL		IT AIR QUALIT	Y MONITORIN	G STATION D	ATA							
Date	TNPL CH4	TNPL CHLORINE	TNPL CO_ABT	TNPL H2S	TNPL HCNM	TNPL HCT	TNPL NO	TNPL NO2	TNPL NOX	TNPL PM10	TNPL SO2	TNPL Barometric Pressure	TNPL RAIN	TNPL Relative Humidity	TNPL SOLAR	TNPL TEMP	TNPL Vertcal WS	TNPL Wind Speed	TNPL Wind Direction
	ug/m3	ppm	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	mmHg	mm	%	W/m2	degree C	m/s	m/s	degree
									Mar	-24									
01-03-2024	10.00	0.00	368.0	11.6	6.30	9.90	9.90	11.30	19.20	75.30	6.00	752	0.00	72.4	28.3	36.8	0.09	1.2	155.48
02-03-2024	9.31	0.00	377.8	10.5	5.61	9.21	9.22	10.61	18.51	72.94	5.31	753	0.00	73.7	28.7	35.4	0.09	1.11	151.03
03-03-2024	8.33	0.00	352.2	9.0	4.63	8.23	8.24	9.63	17.53	77.01	4.33	752	0.00	72.2	28.5	33.5	0.10	1.02	147.15
04-03-2024	7.93	0.00	344.9	9.4	4.87	8.47	9.12	10.28	18.35	73.82	5.74	757	0.00	73.1	28.2	34.0	0.09	1.03	136.9
05-03-2024	7.18	0.00	329.1	9.0	4.58	8.18	9.28	10.28	18.48	73.33	6.28	755	0.00	71.6	28.0	33.4	0.10	1	130.96
06-03-2024	7.31	0.00	310.0	9.2	4.71	8.31	9.42	10.41	18.61	65.04	6.41	754	0.00	73.7	25.9	33.6	0.09	1.03	138.39
07-03-2024	7.53	0.00	318.5	9.5	4.93	8.53	9.63	10.63	18.83	62.16	6.63	757	0.00	73.1	28.2	34.1	0.08	1.07	130.42
08-03-2024	7.59	0.00	331.3	9.6	4.99	8.59	9.69	10.69	18.89	69.00	6.69	756	0.00	74.3	27.7	34.2	0.08	1.25	133.36
09-03-2024	7.81	0.00	335.0	9.9	5.21	8.81	9.91	10.91	19.11	74.39	6.91	758	0.00	75.5	27.3	34.6	0.07	1.28	134.97
10-03-2024	7.79	0.00	324.4	9.9	5.19	8.79	9.89	10.89	19.09	78.47	6.89	756	0.00	74.4	27.1	34.6	0.07	1.37	119.44
11-03-2024	7.58	0.00	316.5	9.6	4.98	8.58	9.68	10.68	18.88	76.91	6.68	757	0.00	74.5	26.9	34.2	0.06	1.17	161.39
12-03-2024	7.62	0.00	333.4	9.6	5.02	8.62	9.72	10.72	18.92	81.62	6.72	757	0.00	76.0	27.4	34.2	0.06	1.3	133.18
13-03-2024	7.68	0.00	315.8	9.7	5.08	8.68	9.78	10.78	18.98	79.80	6.78	758	0.00	73.5	27.2	34.4	0.06	1.49	142
14-03-2024	8.02	0.00	313.2	10.2	5.42	9.02	10.13	11.12	19.32	77.38	7.12	761	0.00	75.5	26.7	35.1	0.07	1.14	187.57
15-03-2024	7.82	0.00	326.6	9.9	5.22	8.82	9.92	10.92	19.12	81.99	6.92	760	0.00	75.5	26.1	34.7	0.07	1.44	147.85
16-03-2024	7.76	0.00	318.1	9.8	5.16	8.76	9.86	10.86	19.06	67.11	6.86	761	0.00	74.2	26.3	34.5	0.07	1.31	114.3
17-03-2024	7.51	0.00	322.9	9.5	4.91	8.51	9.61	10.61	18.81	58.09	6.61	759	0.00	73.1	27.4	34.0	0.08	1.35	123.27
18-03-2024	7.45	0.00	315.2	9.4	4.85	8.45	9.56	10.55	18.75	66.06	6.55	760	0.00	75.1	27.6	33.9	0.07	1.12	148.84
19-03-2024	7.50	0.00	314.8	9.4	4.90	8.50	9.61	10.60	18.80	81.93	6.60	761	0.00	75.4	27.9	34.0	0.07	1.1	134.75
20-03-2024	7.46	0.00	343.6	9.4	4.86	8.46	9.56	10.56	18.76	79.69	6.56	760	0.00	73.5	27.7	33.9	0.08	1.11	131.11
21-03-2024	7.45	0.00	320.9	9.4	4.85	8.45	9.56	10.55	18.75	67.92	6.55	759	0.00	75.0	24.9	33.9	0.07	1.14	139.06
22-03-2024	7.65	0.00	311.1	9.7	5.05	8.65	9.75	10.75	18.95	70.69	6.75	762	0.00	76.0	25.1	34.3	0.07	1.13	132.09
23-03-2024	7.79	0.00	324.3	9.9	5.19	8.79	9.89	10.89	19.09	66.42	6.89	762	0.00	75.1	26.7	34.6	0.07	1.37	119.04
24-03-2024	7.37	0.00	320.0	9.2	4.77	8.37	9.48	10.47	18.67	62.21	6.47	758	0.00	74.8	23.8	33.8	0.08	1.01	123.68
25-03-2024	7.44	0.00	334.9	8.1	5.20	8.80	10.28	10.24	19.52	73.17	7.31	759	0.00	72.1	26.4	34.6	0.09	1.01	142.06
26-03-2024	8.10	0.00	384.2	10.3	5.50	9.10	11.01	10.10	20.10	62.67	9.58	759	0.00	71.9	26.8	35.2	0.07	1.17	154.9
27-03-2024	8.17	0.00	448.2	10.5	5.57	9.17	11.08	10.17	20.17	51.21	8.57	764	0.00	74.7	27.8	35.4	0.07	1.24	118.3
28-03-2024	8.78	0.00	440.6	11.4	6.18	9.78	11.69	10.78	20.78	58.34	9.18	761	0.00	72.6	27.0	36.6	0.07	1.1	124.65
29-03-2024	8.77	0.00	438.1	11.4	6.17	9.77	11.68	10.77	20.77	61.68	9.17	761	0.00	74.3	26.4	36.6	0.07	1.3	130.76
30-03-2024	8.86	0.00	432.1	11.5	6.26	9.86	11.77	10.86	20.86	76.34	9.26	757	0.00	73.5	26.7	36.7	0.07	1.05	149.29
31-03-2024	8.82	0.00	437.7	11.4	6.22	9.82	11.73	10.82	20.82	64.99	9.22	758	0.00	73.2	26.6	36.7	0.09	1.17	128.98
MINIMUM	7.2	0.0	310.0	8.1	4.6	8.2	8.2	9.6	17.5	51.2	4.3	752.0	0.0	71.6	23.8	33.4	0.1	1.0	114.3
MAXIMUM	10.0	0.0	448.2	11.6	6.3	9.9	11.8	11.3	20.9	82.0	9.6	764.0	0.0	76.0	28.7	36.8	0.1	1.5	187.6
AVERAGE	7.9	0.0	348.5	9.9	5.2	8.8	10.0	10.6	19.2	70.6	7.0	758.2	0.0	74.0	27.0	34.7	0.1	1.2	137.6

A TNPL

TAMILNADU NEWSPRINT AND PAPERS LIMITED

CONTINUOUS AMBIENT AIR QUALITY MONITORING STATION DATA

MONTH	TNPL PM2.5_COAL_ YARD										
	ug/m3										
1-Oct-23	16.48	1-Nov-23	9.67	1-Dec-23	11.86	1-Jan-24	18.42	1-Feb-24	14.43	1-Mar-24	16.51
2-Oct-23	14.26	2-Nov-23	12.59	2-Dec-23	11.98	2-Jan-24	16.83	2-Feb-24	16.36	2-Mar-24	16.75
3-Oct-23	17.48	3-Nov-23	16.48	3-Dec-23	11.57	3-Jan-24	15.06	3-Feb-24	16.59	3-Mar-24	15.90
4-Oct-23	12.45	4-Nov-23	15.24	4-Dec-23	15.20	4-Jan-24	15.14	4-Feb-24	15.51	4-Mar-24	15.89
5-Oct-23	10.23	5-Nov-23	17.49	5-Dec-23	20.92	5-Jan-24	15.06	5-Feb-24	14.37	5-Mar-24	15.25
6-Oct-23	7.48	6-Nov-23	18.49	6-Dec-23	17.71	6-Jan-24	14.52	6-Feb-24	12.35	6-Mar-24	14.67
7-Oct-23	12.31	7-Nov-23	12.48	7-Dec-23	16.27	7-Jan-24	15.19	7-Feb-24	14.57	7-Mar-24	15.14
8-Oct-23	15.40	8-Nov-23	16.48	8-Dec-23	17.41	8-Jan-24	14.57	8-Feb-24	16.85	8-Mar-24	15.14
9-Oct-23	16.25	9-Nov-23	14.28	9-Dec-23	16.41	9-Jan-24	14.04	9-Feb-24	17.25	9-Mar-24	15.29
10-Oct-23	10.78	10-Nov-23	13.27	10-Dec-23	15.20	10-Jan-24	14.71	10-Feb-24	17.06	10-Mar-24	14.10
11-Oct-23	13.48	11-Nov-23	12.94	11-Dec-23	15.53	11-Jan-24	14.67	11-Feb-24	15.12	11-Mar-24	15.42
12-Oct-23	15.29	12-Nov-23	10.48	12-Dec-23	15.92	12-Jan-24	16.31	12-Feb-24	16.58	12-Mar-24	15.12
13-Oct-23	17.42	13-Nov-23	8.47	13-Dec-23	15.46	13-Jan-24	16.40	13-Feb-24	18.10	13-Mar-24	16.13
14-Oct-23	13.25	14-Nov-23	16.49	14-Dec-23	15.21	14-Jan-24	19.26	14-Feb-24	15.49	14-Mar-24	17.18
15-Oct-23	18.49	15-Nov-23	11.69	15-Dec-23	14.13	15-Jan-24	15.82	15-Feb-24	13.84	15-Mar-24	15.40
16-Oct-23	16.35	16-Nov-23	11.52	16-Dec-23	13.40	16-Jan-24	16.05	16-Feb-24	13.51	16-Mar-24	15.04
17-Oct-23	12.32	17-Nov-23	11.46	17-Dec-23	14.33	17-Jan-24	15.22	17-Feb-24	14.72	17-Mar-24	14.06
18-Oct-23	15.36	18-Nov-23	12.61	18-Dec-23	14.06	18-Jan-24	14.30	18-Feb-24	15.26	18-Mar-24	14.97
19-Oct-23	11.80	19-Nov-23	13.67	19-Dec-23	13.40	19-Jan-24	13.84	19-Feb-24	15.79	19-Mar-24	15.25
20-Oct-23	23.47	20-Nov-23	14.52	20-Dec-23	14.20	20-Jan-24	17.23	20-Feb-24	16.55	20-Mar-24	15.22
21-Oct-23	20.14	21-Nov-23	12.69	21-Dec-23	14.83	21-Jan-24	18.29	21-Feb-24	17.27	21-Mar-24	15.03
22-Oct-23	17.52	22-Nov-23	11.20	22-Dec-23	14.62	22-Jan-24	15.56	22-Feb-24	17.17	22-Mar-24	15.16
23-Oct-23	11.09	23-Nov-23	10.81	23-Dec-23	14.25	23-Jan-24	15.55	23-Feb-24	16.03	23-Mar-24	15.01
24-Oct-23	12.36	24-Nov-23	11.09	24-Dec-23	13.90	24-Jan-24	16.21	24-Feb-24	16.57	24-Mar-24	14.55
25-Oct-23	8.46	25-Nov-23	11.59	25-Dec-23	14.47	25-Jan-24	17.24	25-Feb-24	16.47	25-Mar-24	14.51
26-Oct-23	10.63	26-Nov-23	15.48	26-Dec-23	13.64	26-Jan-24	14.72	26-Feb-24	16.25	26-Mar-24	14.30
27-Oct-23	14.59	27-Nov-23	11.40	27-Dec-23	14.95	27-Jan-24	15.49	27-Feb-24	18.06	27-Mar-24	17.38
28-Oct-23	16.70	28-Nov-23	18.47	28-Dec-23	15.60	28-Jan-24	15.95	28-Feb-24	18.22	28-Mar-24	17.33
29-Oct-23	13.48	29-Nov-23	11.51	29-Dec-23	15.27	29-Jan-24	15.88	29-Feb-24	17.94	29-Mar-24	17.30
30-Oct-23	15.40	30-Nov-23	20.48	30-Dec-23	15.15	30-Jan-24	13.81			30-Mar-24	16.25
31-Oct-23	9.47		15.48	31-Dec-23	17.07	31-Jan-24	12.32			31-Mar-24	16.75
MINIMUM	7.48	MINIMUM	8.47	MINIMUM	11.57	MINIMUM	12.32	MINIMUM	12.35	MINIMUM	14.06
MAXIMUM	23.47	MAXIMUM	20.48	MAXIMUM	20.92	MAXIMUM	19.26	MAXIMUM	18.22	MAXIMUM	17.38
AVERAGE	14.20	AVERAGE	13.57	AVERAGE	14.97	AVERAGE	15.60	AVERAGE	16.01	AVERAGE	15.55

ONLINE - STACK EMISSION MONITORING DATA

											SUMMAR	Y OF REAL	TIME STACI		MONITOR	ING DATA	TRANSMIT	TED TO TNP	CB CARE A	IR CENTRE											
DAY WISE	РВ 4 _ CO	PB 5 _ CO	PB 6 _ CO	PB 7 _ CO	PB 4 _ PM	PB 5 _ PM	PB 6 _ PM	PB 7 _ PM	PB 4 _ SO2	PB 5 _ SO2	PB 6 _ SO2	PB 7 _ SO2	PB 4 _ NO2	PB 5_ NO2	PB 6 _ NO2	PB 7 _ NO2	SRP CO_	SRP CO_LK_2	SRP CO_	SRP H2S_	SRP H2S_	SRP H2S_	SRP NOX_	SRP NOX_	SRP NOX_	SRP PM_	SRP PM_	SRP PM_	SRP SO2_	SRP SO2_	SRP SO2_
иом								(mg	/Nm3)					<u> </u>			LK_1		RB # 3	LK_1	LK_2 ppm	RB#3	LK_1	LK_2	RB # 3	LK 1	LK 2 mg/Nm3	RB # 3	LK_1	LK_2 ppm	RB # 3
								(8	,						Oct	t-23															
1-Oct-23	9.98	18.2	9.88	50.66	12.08	25.58	25.41	10.27	347.13	222.69	120.8	317.75	305.37	64.57	104.5	13.08	-2.2	336	0.36	-0.012	0.6	0.01	2.22	11.83	0.57	7.35	62.57	6.62	1.03	9.53	6.2
2-Oct-23	10.35	17.9	6.88	27.57	16.86	26.22	23.88	9.69	347.24	203.78	168.6	451.18	306.65	60.64	101.84	14.74	-2.2	61.7	0.36	-0.013	0.01	0.01	2.22	0.07	0.53	5.07	51.51	6.6	1.03	0.14	6.2
3-Oct-23	9.82	32.91	8.64	123.09	11.4	30.48	25.05	9.97	328.63	183.05	162.03	371.03	286.56	52.74	92.99	11.07	-2.2	82.3	0.36	-0.013	0.31	0.01	2.22	1.15	0.54	4.27	32.72	6.59	1.03	0.33	6.2
4-Oct-23	10.68	8.77	8.57	36.59	13.38	28.55	25.34	9.94	189.07	78.99	224.47	343.21	151.19	31.44	86.65	9.52	-2.2	90.5	0.36	-0.012	0.82	0.01	2.22	11.72	0.57	6.49	72.23	6.56	1.03	4.06	6.21
5-Oct-23	10.51	5.18	8	152.03	13.64	33.26	25.77	10.09	179.3	64.89	175.95	369.21	142.65	23.98	101.56	9.13	-2.2	89.4	0.36	-0.011	0.61	0.01	2.22	15.04	0.58	3.15	91.16	6.52	1.03	4.85	6.21
6-Oct-23	9.81	4.77	5.49	230.89	17.32	31.31	25.72	10.73	180.75	58.72	132.2	328.66	143.33	17.49	108.57	11.14	-2.2	61.7	0.36	-0.012	0.01	0.01	2.22	0.07	0.56	0.1	133.95	6.43	1.02	0.15	6.22
7-Oct-23	9.81	4.69	17.59	279.57	16.95	29.63	25.4	10.52	177.21	51.18	93.16	249.84	138.93	17.83	104.32	8.74	-2.2	61.9	0.36	-0.012	0.01	0.01	2.22	0.07	0.56	0.1	119.7	6.38	1.03	0.15	6.22
8-Oct-23	9.83	9.19	9.5	276.57	10.93	28.5	23.64	9.87	181.11	73.49	199.87	397.12	140.94	34.39	103.89	9.8	-2.2	67.7	0.36	-0.012	0.23	0.01	2.22	1.95	0.56	3.64	39.9	6.28	1.03	0.22	6.23
9-Oct-23	10.42	120.64	5.13	416.6	12.25	31.24	23.66	9.87	186.41	111.41	158.89	379.68	145.86	54.49	102.69	9.3	-2.2	299.8	0.36	-0.011	0.81	0.01	2.22	24.18	0.58	6.05	71.64	6.23	1.03	24.22	6.24
10-Oct-23	9.84	23.81	4.89	186.72	11.49	25.45	24.57	9.68	204.61	132.5	98.51	307.97	159.85	58.82	122.25	10.23	-2.2	392.6	0.36	-0.011	0.83	0.01	2.22	31.97	0.58	6.31	78.1	6.19	1.03	21.24	6.25
11-Oct-23	11.07	22.17	3.75	293.24	14.07	28.97	25.48	10.12	219.43	174.7	80.01	312.45	173.26	63.14	113.95	10.52	-2.2	92.5	0.36	-0.011	0.82	0.01	2.22	18.54	0.57	6.24	82.63	6.12	1.03	8.27	6.26
12-Oct-23	10.46	129.29	6.75	582.01	12.55	32.16	22.48	11.14	229.24	222.28	104.29	227.86	185.79	56.89	104.88	5.58	-2.2	289.5	0.36	-0.012	0.78	0.01	2.22	19.3	0.57	3.06	86.46	6.05	1.03	26.69	6.27
13-Oct-23	9.98	21.33	5.9	641.81	13.1	30.08	24.13	11.9	233.94	228.76	50.97	222.02	194.53	70.56	108.58	3.2	-2.2	241.7	0.36	-0.012	0.71	0.01	2.22	9.07	0.55	4.58	95.5	6.02	1.03	24.14	6.27
14-Oct-23	10.8	24.7	5.26	599.59	16.06	30.7	23.43	12.17	226.68	160.64	56.53	233.99	188.66	71.07	104.9	4.03	-2.2	175.2	0.36	-0.012	0.75	0.01	2.22	10.82	0.56	4.41	99.92	6.04	1.03	34.21	6.28
15-Oct-23	10.45	31.19	6.12	203.77	59.35	32.6	23.99	11.52	241.19	144.81	178.25	338.4	189.34	77.07	107.78	6.39	-2.2	172	0.36	-0.012	0.8	0.01	2.22	17.02	0.54	2.55	106.75	6	1.03	37.77	6.28
16-Oct-23	10.79	63.62	6.64	251.68	57.74	33.98	23.59	11.65	250.5	151.8	71.55	317.81	196.39	76.07	132.12	8.31	-2.2	483.8	0.36	-0.012	0.59	0.01	2.22	1.74	0.54	5.26	101.75	5.96	1.03	52.43	6.3
17-Oct-23	9.5	17.85	14.27	204.93	57.85	31.63	25.16	11.84	263.78	8.51	257.79	335.68	204.14	52.22	137.41	6.99	-2.2	149	0.36	-0.013	0.5	0.01	2.22	1.06	0.51	6.4	102.76	7.47	1.03	33.25	6.3
18-Oct-23	10.64	32.77	14.62	122.96	58.65	28.06	23.18	11.71	258.3	78.75	249.32	377.96	218.16	58.21	136.98	6.99	-2.1	58.5	0.36	-0.013	0.01	0.01	2.22	0.11	0.51	2.13	1.89	12.57	1.03	0.13	6.3
19-Oct-23	11.1	55.77	12.65	319.25	59.42	29.96	25.08	9.8	248.54	266.22	292.62	353.06	209.71	85.55	107.27	10.44	-2.2	79.5	0.36	-0.013	0.01	0.01	2.22	0.1	0.51	2.03	0.16	16.26	1.03	0.14	6.3
20-Oct-23	11.06	64.97	12.22	392.64	63	32.31	24.07	8.17	234.29	320.81	188.3	471.34	197.2	89.68	142.46	17.8	-2.2	54.3	0.36	-0.013	0.01	0.01	2.22	0.09	0.53	2.01	0.17	1.86	1.03	0.14	6.3
21-Oct-23	9.98	45.13	19.59	166.76	62.6	27.06	24.69	8.55	225.96	290.8	155.21	339.45	176.93	94.56	144.93	16.33	-2.2	55	0.36	-0.012	0.01	0.01	2.22	0.08	0.55	2.08	4.4	0.96	1.03	0.14	6.3
22-Oct-23	9.44	73.38	8.54	762.77	63.24	34.24	23.56	8.86	223.54	242.16	229.4	468.87	187.48	88.99	120.6	4.7	-2.2	62.7	0.36	-0.012	0.15	0.01	2.22	0.6	0.57	3.11	23.22	0.95	1.03	2.86	6.3
23-Oct-23	10.77	88.02	5.67	413.33	61.87	34.82	23.79	8.67	222.29	243.19	80.78	185.93	184.86	84.41	103.43	0.94	-2.2	131.7	0.36	-0.01	0.75	0.01	2.22	8.07	0.59	1.77	98.77	0.95	1.02	79.05	6.3
24-Oct-23	9.93	37.7	5.03	315.95	63.81	32.66	23.54	9.24	215.32	303.94	137.39	190.25	166.81	82.37	122.21	1.92	-2.2	216.4	0.36	-0.01	0.77	0.01	2.22	10.33	0.59	0.18	101.01	1.1	1.02	80.6	6.3
25-Oct-23	10.39	33.98	4.78	149.63	64.08	30.38	25.12	8.79	207.32	283.59	211.79	247.47	158.82	91.76	116.29	4.77	-2.2	72.1	0.34	-0.011	0.81	0.01	2.22	13.72	0.57	0.1	109.34	1.4	1.03	71.5	6.29
26-Oct-23	10.04	44.2	6.58	60.43	39.97	28.64	24.86	10.37	210.08	196.03	139.61	238.68	163.47	84.67	153.48	8.7	7.8	117.9	0.35	0.61	0.83	0.01	6.39	8.68	2.14	12.93	112.39	1.53	10.28	53.12	6.29
27-Oct-23	9.17	18.29	14.74	155.98	12.26	5.77	24.39	10.36	205.71	32.78	291.95	287.84	156.33	41.46	163.64	7.52	18.4	60.8	0.32	1.27	0.81	0.01	20.96	16.23	51.21	5.2	125.54	1.47	29.41	40.52	6.28
28-Oct-23	5.57	9.11	23.52	435.85	12.24	1.31	25.02	10.37	199.33	4.66	256.19	279.29	163.39	31.98	212.85	7.58	17.9	114.4	0.33	1.267	0.8	0.09	17.08	3.17	58.57	5.71	128.7	1.47	31.86	72.26	9.67
29-Oct-23	4.83	8.87	18.24	116.52	7.16	17.15	22.45	10.02	89.88	8.97	249.06	247.82	161.83	34.93	212.69	8.68	18.4	226.9	0.32	1.292	0.92	0.34	8.6	10.38	62.77	6.27	127	1.47	66.17	89.2	19.05
30-Oct-23	NA	141.61	25.03	74.28	2.41	30.85	22.49	9.81	1.43	114.78	307.47	361.82	NA	72.37	130.39	7.12	18.1	171.6	0.32	1.256	0.8	0.39	25.63	9.09	65.86	8.92	130.52	1.47	39.95	93.86	27.35
31-Oct-23	NA	157.5	14.38	180.66	2.41	31.56	23.29	9.31	1.44	234.36	271.09	374.61	NA	83.02	112.23	6.78	19.5	333.3	0.32	1.321	0.8	0.23	34.87	4.41	61.6	5.98	143.08	1.47	57.76	103.55	28.66
MINIMUM	4.83	4.69	3.75	27.57	2.41	1.31	22.45	8.17	1.43	4.66	50.97	185.93	138.93	17.49	86.65	0.94	-2.20	54.30	0.32	-0.01	0.01	0.01	2.22	0.07	0.51	0.10	0.16	0.95	1.02	0.13	6.20
MAXIMUM	11.10	157.50	25.03	762.77	64.08	34.82	25.77	12.17	347.24	320.81	307.47	471.34	306.65	94.56	212.85	17.80	19.50	483.80	0.36	1.32	0.92	0.39	34.87	31.97	65.86	12.93	143.08	16.26	66.17	103.55	28.66
AVERAGE	9.90	44.11	10.29	265.30	30.33	28.23	24.27	10.16	210.63	157.85	174.00	320.27	186.15	61.53	123.17	8.45	1.46	158.14	0.35	0.22	0.54	0.04	5.45	8.41	10.19	4.30	81.79	4.94	8.42	31.25	8.19

											SUMMAR	Y OF REAL	TIME STACE		IMONITOR	ING DATA	TRANSMIT	TED TO TNE	CB CARE A	IR CENTRE											
DAY WISE	РВ 4 _ СО	PB 5 _ CO	PB 6 _ CO	РВ 7 _ СО	PB 4 _ PM	PB 5 _ PM	PB 6 _ PM	PB 7 _ PM	PB 4_ SO2	PB 5 _ SO2	PB 6 _ SO2	PB 7 _ SO2	PB 4 _ NO2	PB 5_ NO2	PB 6 _ NO2	PB 7 _ NO2	SRP CO_ LK_1	SRP CO_LK_2	SRP CO_ RB # 3	SRP H2S_ LK_1	SRP H2S_ LK_2	SRP H2S_ RB#3	SRP NOX_ LK_1	SRP NOX_ LK_2	SRP NOX_ RB # 3	SRP PM_ LK 1	SRP PM_ LK 2	SRP PM_ RB # 3	SRP SO2_ LK_1	SRP SO2_ LK_2	SRP SO2_ RB # 3
иом								(mg/	/Nm3)												ppm						mg/Nm3			ppm	
															No	/-23															
1-Nov-23	2.29	105.85	11.72	189.42	2.41	30.73	21.67	8.41	1.44	270.81	284.78	423.15	NA	77.86	115.79	7.73	19.2	325.5	0.32	1.321	0.75	0.48	23.26	5.11	64.68	5.89	148.68	1.47	17.73	92.05	29.14
2-Nov-23	NA	56.48	18.34	151.72	2.41	27.73	22.71	8.88	1.42	242.09	278.41	383.02	NA	78.02	122.57	8.19	16.2	466.7	0.33	1.179	0.84	0.58	8.81	1.49	65.19	15.47	146.88	13.57	34.23	71.54	25.21
3-Nov-23	NA	80.68	22.33	130.79	2.41	29.88	23.47	8.84	1.43	217.67	292.17	418.26	NA	74.75	108.02	6.14	17.6	105.7	0.33	1.271	0.19	0.52	18.66	0.42	68.45	6.61	55.18	55.72	50.42	24.74	16.09
4-Nov-23	NA	82.53	23.3	88.23	2.41	31.49	23.05	9.26	1.42	201.94	260.56	401.39	NA	83.84	154.47	3.52	19.1	581.6	0.6	1.323	0.73	0.57	7.56	1	69.37	4.35	148.7	52.8	16.57	91.17	15.92
5-Nov-23	NA	131.1	25.58	209.76	2.41	34.14	23.39	10.31	1.43	224.85	282.82	276.05	NA	93.35	185.97	0.87	14.6	642.4	0.33	1.331	0.89	0.64	11.96	4.13	66.76	5.31	148.7	57.09	9.87	98.77	14.96
6-Nov-23	8.9	60.16	37.88	99.1	6.95	27.98	23.67	9.67	57.83	243.8	287.38	333.33	201.84	99	121.57	1.14	4.4	649.7	0.35	1.252	0.76	0.63		1.91	62.37	5.03	148.7	56.48	2.3	109.22	13.84
7-Nov-23	10.08	69.47	23.28	187.24	4.53	27.73	24.22	9.36	227.33	214.82	187.91	239.57	200.19	85.91	247.32	2.74	5.2	580.4	0.35	1.28	0.9	0.59		2.18	66.18	4.38	148.7	57.69	2.45	93.67	15.67
8-Nov-23	9.28	78.57	15.75	406.95	6.01	28.21	24.99	9.44	241.08	253.6	264.99	287.88	212.53	84.45	180.93	1.18	6	632.9	1.92	1.263	0.77	0.55	4.73	0.98	73.17	4.13	148.7	42.44	2.5	74.35	16.59
9-Nov-23	9.3	83.41	19.47	369.23	3.37	29.43	24.07	10.47	210.19	232.82	212.91	229.65	192.27	79.08	205.55	0.45	5.6	441.7	16.93	1.266	0.97	0.48		4.33	66.41	4.41	97.45	22.18	2.46	99.16	16.95
10-Nov-23	10.64	53.52	15.46	404.09	3.84	27.9	23.37	11.29	136.89	146.24	120.51	170.15	146.41	71.97	257.53	2.91	4	208.1	136.38	1.285	1.06	0.58		57.87	69.18	4.73	2.63	18.28	2.17	126.14	17.57
11-Nov-23	9.26	77.23	16.43	146.31	4.84	27.97	25.36	10.09	134.03	154.75	123.49	170.47	142.45	64.01	256.08	5.56	5.3	595	316.9	1.276	0.86	0.61	25.19	109.19	69.94	4.31	2.36	13.91	67.78	242.72	16.61
12-Nov-23	9.54	56.57	15.32	113.58	5.06	27.8	25.79	9.95	131.92	126.22	170.54	199.35	139.63	52.8	236.2	2.94	2.8	634.6	226.99	1.321	0.83	0.64		74.53	65.8	5.02	2.47	13.88		243.21	13.79
13-Nov-23	8.71	45.54	15	155.7	5.63	27.86	24.72	10.33	130.03	84.34	175.88	230.8	137.67	35.62	225.15	2.3	6.1	836.5	177.25	1.365	0.77	0.67	143.13	52.74	68.17	4.79	2.56	13.87	2.23	210.38	19.03
14-Nov-23	9.26	68.6	21.06	559.46	5.41	26.58	25.23	11.15	129.03	69.6	181.54	215.51	136.81	28.57	243.71	1.41	5.3	764.8	311.28	1.365	0.79	0.62	126.49	52.22	64.51	3.82	4.79	13.64	2.29	207.8	17.14
15-Nov-23	10.61	50.96	19.29	501.05	6	25.18	25.56	10.39	128.06	105.36	128.23	273.7	136.41	61.12	120.74	6.68	5.3	763.2	349.16	1.326	0.77	0.56		47.65	59.85	4.09	4.65	13.74	2.31	204.29	30.55
16-Nov-23	10.04	67.85	24.48	139.93	5.8	27.03	23.88	9.73	127.44	165.58	69.03	219.11	135.32	77.24	205.08	7	4.4	706.1	306.83	1.301	0.8	0.61		45.98	64.75	4.12	6.66	13.87	2.1	190.57	32.17
17-Nov-23	9.72	52.63	9.95	363.61	5.72	29.26	24.07	10.68	126.86	198.39	104.75	205.4	134.74	78.12	191.34	0.55	1246.4	588.5	190.77	1.278	0.73	0.61		129.13	68.15	4.07	3.95	13.95		207.55	26.45
18-Nov-23	9.53	45.3	25.59	299.57	5.77	29.03	24.59	11.1	125.7	168.25	121.12	186.47	133.9	73.18	194.14	0.26	5.6	629.6	116.87	1.282	0.85	0.65		206.78	64.74	4.21	10.91	13.9	2.25	249.1	20.84
19-Nov-23	9.99	28.33	12	443.21	6.02	30.65	24.38	11.18	124.69	161.62	116.18	203.72	132.57	67.76	190.4	0.34	4.2	467.9	120.6	1.282	0.71	0.73		125.53	65.99	3.49	23.53	13.8	2.64	176.07	50.65
20-Nov-23	10.17	29.36	6.96	761.85	6.03	33.2	26.36	12.17	124.06	205.77	186.9	304.15	132.06	78.33	153.04	0.41	4	57.4	134.75	1.255	0.01	0.77		11.36	64.82	5.88	74.42	13.78	2.09	10.79	80.65
21-Nov-23	9.41	29.49	11.33	275.47	6.26	26.6	25.01	11.04	123.27	223.35	158.14	330.55	131.07	80.92	138.54	0.57	813.5	109	304.16	1.257	0.23	0.62	49.78	36.17	71.38	2.84	20.05	13.91		15.47	62.81
22-Nov-23	9.87	65.55	13.51	150.88	6.39	28.13	24.95	10.44	122.75	211.89	73.25	300.7	130.62	73.08	127.77	0.67	422.5	420.8	258.89	1.263	0.8	0.68	23.56	136.54	64.24	3.76	31.59	13.83	2.4	48.71	91.14
23-Nov-23	10.71	97.91	10.54	213.82	5.02	30.67	24.77	10	121.88	141	85.59	269.73	129.53	58.57	146.46	0.14	6.2	550.1	129.57	1.254	0.88	0.69	4.65	128.15	67.26	3.71	24.19	13.72	2.41	30.39	84.05
24-Nov-23	10.44	74.42	17.41	294.04	5.75	32.11	25.27	10.45	121.63	89.14	91.65	205.65	129.34	44.08	217.39	0.24	5.5	480.7	160.11	1.259	0.92	0.68		127.9	58.08	3.22	25.97	13.83	2.27	50.01	99.09
25-Nov-23	10.64	36.17	36.3	177.47	5.5	28.96	24.07	9.89	121.84	72.63	77.87	200.89	129.17	41.07	170.47	0.19	5.1	587.8	270.86	1.292	0.89	0.75	119.92	117.39	63.76	1.83	36.71	13.97	2.25	45.31	157.48
26-Nov-23	11.13	79.58	13.95	730.4	6.97	31.94	23.58	13	120.86	96.72	129.5	259.66	128.15	46.18	149.2	0.01	5.2	577	187.66	1.297	0.81	0.75	221.27	106.28	68.28	3.2	29.66	14	2.28	51.79	178.4
27-Nov-23	9.93	84.46	7.22	434.41	9.68	31.32	24.92	12.75	120.46	145.06	151.17	292.86	128.15	54.67	124.17	0	6	136.3	208.59	1.273	0.71	0.8	89.82	121.18	66.13	3.08	38.63	14.06	2.36	53.78	200.61
28-Nov-23	10.28	124.73	13.43	494.53	17.37	31.76	24	12.42	120.59	175.19	137.47	252.48	127.67	61.39	113.47	0.02	6.3	323	259.13	1.285	0.67	0.67	4.46	128.72	65.46	3.29	40.45	14.18	2.41	55.13	196.42
29-Nov-23	10.4	176.29	15.21	733.3	18.08	34.1	24.53	11.35	120.33	171.82	172.21	312.01	127.51	62.53	188.47	0.05	5	43	195.71	1.266	0.74	0.76	219.16	118.61	61.07	2.3	44.51	14.28	2.28	52.51	236.74
30-Nov-23	10.34	201.29	16.53	472.66	32.43	34.13	24.62	11.31	119.99	178.47	148.53	301.29	127.26	63.14	202.85	0.26	5	338.8	306.11	1.285	0.69	0.61	340.04	112.3	71.86	2.24	31.54	14.22	2.21	45.31	230.47
MINIMUM	2.29	28.33	6.96	88.23	2.41	25.18	21.67	8.41	1.42	69.60	69.03	170.15	127.26	28.57	108.02	0.00	2.80	43.00	0.32	1.18	0.01	0.48	4.46	0.42	58.08	1.83	2.36	1.47	2.09	10.79	13.79
MAXIMUM	11.13	201.29	37.88	761.85	32.43	34.14	26.36	13.00	241.08	270.81	292.17	423.15	212.53	99.00	257.53	8.19	1246.40	836.50	349.16	1.37	1.06	0.80	340.04	206.78	73.17	15.47	148.70	57.69	67.78	249.10	236.74
AVERAGE	9.63	76.47	17.82	323.26	6.88	29.65	24.34	10.51	112.53	173.13	169.18	269.90	144.13	67.69	176.48	2.15	89.39	474.83	156.33	1.29	0.74	0.64	80.14	68.93	66.20	4.45	55.13	21.87	9.08	109.06	67.57

											SUMMAR	Y OF REAL	TIME STACE		MONITOR	ING DATA	TRANSMIT	TED TO TNE	PCB CARE A	IR CENTRE											
DAY WISE	РВ 4 _ СО	РВ 5 _ СО	РВ 6 _ СО	PB 7 _ CO	PB 4 _ PM	PB 5 _ PM	PB 6 _ PM	PB 7 _ PM	PB 4 _ SO2	PB 5 _ SO2	PB 6 _ SO2	PB 7 _ SO2	PB 4 _ NO2	PB 5 _ NO2	PB 6 _ NO2	PB 7 _ NO2	SRP CO_ LK 1	SRP CO_LK_2	SRP CO_ RB # 3	SRP H2S_ LK 1	SRP H2S_ LK_2	SRP H2S_ RB#3	SRP NOX_ LK 1	SRP NOX_ LK 2	SRP NOX_ RB # 3	SRP PM_ LK 1	SRP PM_ LK 2	SRP PM_ RB # 3	SRP SO2_ LK 1	SRP SO2_ LK_2	SRP SO2_ RB # 3
иом								(mg/	Nm3)												ppm						mg/Nm3			ppm	
															De	:-23															
1-Dec-23	10.21	81.49	29.48	135.86	33.57	26.74	25.91	11.32	119.79	167.27	248.29	303.32	126.93	67.28	211.22	0.59	6.2	427.9	302.01	1.287	0.66	0.62	4.45	108.01	59.85	4.62	40.74	14.14	2.41	35.49	219.3
2-Dec-23	11.49	78.63	25.2	453.61	39.01	27.66	28.09	11.49	119.87	149.12	131.08	323	126.72	63.98	146.24	0.91	4.7	453	140.42	1.287	0.63	0.75		99	55.84	4.62	47.47	14.14	2.14	36.88	193.62
3-Dec-23	12.12	281.96	9.44	398	31.13	33.47	29.74	10.89	119.43	157.17	284.93	336.57	126.22	52.56	130.16	0.01	5	216.3	158.55	1.298	0.55	0.74	205.84	89.84	53.29	3.31	42.84	14.15	2.26	34.4	188.01
4-Dec-23	11.25	110.41	11.43	626.75	32.86	28.88	26.77	11.61	119.88	140.01	262.96	331.82	125.99	47.77	120.09	0.03	6.3	387.3	240.04	1.271	0.65	0.71	4.7	82.54	54.76	3.36	26.7	15.05	2.41	31.34	177.89
5-Dec-23	10.57	0	9.89	302.03	30.6	1.56	23.82	11.38	119.54	1.15	264.65	346.64	125.54	0.01	114.97	0.03	5.7	25.7	286	1.263	0.01	0.68		0.71	60.44	7.71	87.2	16.29	2.29	1.21	176.14
6-Dec-23	10.86	0	11.96	462.4	32.64	1.55	24.64	10.56	118.36	0	293.16	372.68	126.05	0.1	106.69	0	4.8	25.3	290.7	1.261	0.01	0.59		0.07	55.19	7.82	25.08	16.56	2.16	0.13	179.44
7-Dec-23	10.48	0	14.46	827.08	27.06	NA	24.6	11.05	116.59	0	240.6	341.95	125.32	0.59	129.83	0	4.5	33.1	295.27	1.255	0.1	0.56		9.41	68.13	6.18	23.7	16.74	2.09	5.46	178.59
8-Dec-23	9.99	0	5.91	719.91	5.92	NA	24.79	11.12	116.04	0.2	202.54	353.56	124.08	2.51	107.05	0	5.2	288	283.03	1.259	0.74	0.65	64.15	77.81	62.33	6.7	148.71	16.91	2.24	33.25	184.48
9-Dec-23	6.92	0	9.12	858.3	6.54	NA	25.44	11.15	79.55	4.1	162.54	354.35	123.77	39.66	111.8	0	5.2	433.7	343.75	1.265	0.72	0.65	229.98	82.4	61.3	7.08	148.74	17.28	2.2	34.67	199.75
10-Dec-23	NA	0.01	8.78	409.5	2.41	NA	25.22	11.41	1.47	5.57	155.05	341.81	NA	43.15	108.57	0	5.6	411.6	273.31	1.269	0.69	0.61	105.99	84.5	64.89	6.09	148.76	19	2.28	35.5	191.62
11-Dec-23	7.07	0	5.65	652.75	2.41	NA	24.49	11.25	1.46	1.05	189.08	332.36	NA	11.14	111.78	7.76	5.9	494	237.5	1.28	0.7	0.67	4.79	84.97	63.7	4.53	148.76	22.23	2.35	31.69	189.5
12-Dec-23	3.06	0	6.09	952.72	2.41	NA	24.69	13.39	1.46	1.37	195.79	359.77	NA	12.47	116.97	27.35	5.4	29.5	277.99	1.255	0.02	0.63	95.24	2.76	58.76	6.5	75.36	24.72	2.31	3.77	185.04
13-Dec-23	NA	0	6.72	593.81	2.41	NA	25.01	11.86	1.46	1.88	225.42	271.04	NA	18.78	118.18	22.68	-0.5	96.5	192.34	0.301	0.4	0.65	51.55	34.56	55.05	4.13	17.6	23.59	1.33	0.25	163.87
14-Dec-23	NA	0	6.35	829.35	2.41	NA	24.8	11.03	1.45	2.07	269.01	330.57	NA	21.06	112.82	23.72	-2.2	27.6	82.77	-0.011	0.01	0.73	2.22	0.46	61.06	2.01	29.36	22.85	1.03	0.12	158.88
15-Dec-23	9.6	0	5.39	428.39	12.86	NA	22.82	10.02	58.87	2.25	311.39	316.82	121.11	21.82	97.48	23.33	-0.8	302.3	133.35	0.208	0.66	0.71	2.58	69.09	55.91	4.82	90.19	46.31	1.24	5.1	172.12
16-Dec-23	10.28	0	5.78	1039.73	15.53	NA	24.27	13.16	112.06	2.3	306.25	348.77	120.26	18.42	100.47	18.46	5.2	598	117.74	1.288	0.74	0.71		93.92	55.18	4.51	53.38	67.38	2.19	32.23	127.34
17-Dec-23	10.49	0	4.89	1226.76	15.42	NA	23.26	12	112.06	2.43	306.6	375.08	120	14.91	95.03	12.22	0.1	775.6	198.22	0.344	0.76	0.75	3.12	64.55	57.47	5.03	14.32	65.32	1.39	6.09	99.56
18-Dec-23	10.02	0	9.03	646.36	14.98	NA	23.97	12.37	112.28	2.76	253.67	254.26	119.58	14.99	115.43	10.24	5.2	442.5	293.42	1.261	0.87	0.67	124.48	27.15	59.74	12.36	29.01	65.94	2.26	35.45	134.84
19-Dec-23	9.96	0	5.36	740.83	15.59	NA	25.35	12.42	111.7	2.72	280.35	325.91	119.82	16.89	110.74	13.8	4.5	285.1	170.28	1.195	0.73	0.67		24.19	58.64	5.81	14.75	67.51	2.04	28.54	74.03
20-Dec-23	10.81	0	3.04	936.29	15.12	1.33	23.81	11.56	111.15	2.28	75.92	274.49	120.09	14.38	117.13	20.27	5.3	290.8	0.55	1.28	0.73	0.77	53.24	73.5	60.09	7.59	12.72	70.19	2.24	33.16	61.04
21-Dec-23	9.95	0	31.62	664.27	14.52	1.32	23.16	13.5	110.46	4.4	82.69	170.72	118.83	29.79	182.23	24.61	4.8	158.9	47.5	1.276	0.75	0.67		62.52	60.55	7.31	12.25	74.88	2.18	33.68	55.4
22-Dec-23	8.76	0	11.65	487.95	13.82	1.32	25.32	13.33	110.58	6.19	196.11	274.64	119.2	39.32	191.66	32.02	5.3	194.6	197.48	1.27	0.58	0.64	4.45	49.43	57.87	9.68	13.93	68.75	2.22	35.38	53.38
23-Dec-23	9.89	0	12.66	862.6	15.6	1.32	23.54	14.43	110.52	4.87	168.71	254.68	119.08	26.88	199.68	30.25	8.6	182.3	232.73	1.263	0.65	0.71	18.69	60.22	60.41	12.24	9.66	70.62	60.38	33.65	75.48
24-Dec-23	10.47	0	17.4	861.87	17.55	1.32	23.93	14.41	109.8	3.28	331.03	311.62	117.67	19.42	200.18	24.26	82.7	434.3	276.44	1.276	0.55	0.74		42.3	58.99	8.01	16.48	69.81	70.95	28.29	49.67
25-Dec-23	9.87	0	8.32	1269.81	16.81	1.32	24.06	14.48	108.66	2.97	273.8	315.75	119.79	19.2	131.02	15.38	58.1	761.4	180.1	1.32	0.4	0.74	77.82	22.15	54.65	6.22	11.63	64.22	106.07	30.15	61.1
26-Dec-23	8.95	0	4.91	859.2	16.07	1.32	23.8	15.13	108.53	2.37	280.78	322.24	119.92	14.01	119.26	14.82	94.7	265.2	150.78	1.263	0.38	0.7		34.32	53.14	8.05	20.79	80.02	76.61	32.65	92.1
27-Dec-23	8.29	0	12.63	237.69	36.69	1.32	25.15	14.72	107.79	2.06	289.5	357.39	119.83	8.7	111.13	16.99	78.1	329.8	240.05	1.304	0.67	0.64		59.19	54.72	6.27	4.79	76.41	64.9	34.27	60.66
28-Dec-23	NA	0	7.25	1013.12	11.66	1.32	23.6	14.56	40.78	1.94	289.65	322.55	45.7	3.83	116.48	10.99	43.2	577.8	210.21	1.278	0.61	0.7		51.09	57.02	7	2.89	62.26	21.53	32.64	147.38
29-Dec-23	6.91	0	4.42	1335.27	0.25	1.32	23.36	15.73	1.47	2.4	286.29	350.8	0.16	10.62	116.62	13.98	2.7	791.9	169.97	0.348	0.65	0.69	15.82	49.19	54.35	4.56	4.73	63.77	7.54	2.78	100.44
30-Dec-23	3.44	0	5.21	1326.27	0.25	1.32	23.65	15.09	1.47	2.88	293.01	363.83	0.13	13.31	125.35	15.18	-2.2	374.7	153.78	-0.01	0.75	0.72	2.22	69.16	59.48	16.24	8.89	65.58	1.02	0.39	102.24
31-Dec-23	NA	0	5.85	1640.75	0.25	1.32	23.4	15.65	1.47	3.43	263.4	320.42	0.12	13.78	134.74	14.69	9	469.6	155.76	0.891	0.66	0.73	60.41	64.18	68.66	12.64	6.86	66.13	6.78	25.15	107.5
MINIMUM	3.06	0.00	3.04	135.86	0.25	1.32	22.82	10.02	1.45	0.00	75.92	170.72	0.12	0.01	95.03	0.00	-2.20	25.30	0.55	-0.01	0.01	0.56	2.22	0.07	53.14	2.01	2.89	14.14	1.02	0.12	49.67
MAXIMUM	12.12	281.96	31.62	1640.75	39.01	33.47	29.74	15.73	119.88	167.27	331.03	375.08	126.93	67.28	211.22	32.02	94.70	791.90	343.75	1.32	0.87	0.77	229.98	108.01	68.66	16.24	148.76	80.02	106.07	36.88	219.30
AVERAGE	9.30	17.82	10.19	767.72	15.62	7.54	24.66	12.65	79.55	22.02	239.17	321.27	105.07	21.98	129.39	12.73	15.04	341.43	204.26	1.05	0.55	0.68	56.59	53.97	58.76	6.87	43.17	45.12	14.87	23.02	134.21

											SUMMAR	Y OF REAL	TIME STACE		IMONITOR	ING DATA	TRANSMIT	TED TO TN	PCB CARE A	IR CENTRE											
DAY WISE	РВ 4 _ СО	PB 5 _ CO	РВ 6 _ СО	PB 7 _ CO	PB 4 _ PM	PB 5 _ PM	PB 6 _ PM	PB 7 _ PM	PB 4 _ SO2	PB 5 _ SO2	PB 6 _ SO2	PB 7 _ SO2	PB 4 _ NO2	PB 5_ NO2	PB 6 _ NO2	PB 7 _ NO2	SRP CO_ LK 1	SRP CO_ LK_2	SRP CO_ RB # 3	SRP H2S_ LK 1	SRP H2S_ LK_2	SRP H2S_ RB#3	SRP NOX_ LK 1	SRP NOX_ LK 2	SRP NOX_ RB # 3	SRP PM_ LK 1	SRP PM_ LK 2	SRP PM_ RB # 3	SRP SO2_ LK 1	SRP SO2_ LK_2	SRP SO2_ RB # 3
иом								(mg,	/Nm3)										1		ppm						mg/Nm3			ppm	
															Jan	-24															
1-Jan-24	NA	0	11.69	1286.06	0.25	1.32	23.85	15.81	1.5	3.57	291.98	327.71	0.14	14.14	118.08	11.93	43	401.8	235.51	1.274	0.71	0.79	0	70.81	56.56	8.24	8.28	74.05	89.71	34.06	116.65
2-Jan-24	NA	0	5.49	1166.76	0.25	1.32	24.09	16.11	1.53	3.6	288.46	339.91	0.13	13.76	103.19	10.56	45.3	478.1	266.71	1.298	0.64	0.64	67.5	67.3	64.69	7.75	8.76	70.04	0	36.84	134.92
3-Jan-24	NA	0	8.29	1535.93	0.25	1.32	23.34	17.01	1.5	3.83	288.79	340.33	0.12	16.25	93.28	10.14	26.7	57.3	317.41	1.254	0.02	0.66	0	1.39	57.09	9.05	60.52	59.9	103.61	5.13	121.3
4-Jan-24	10.9	0	7.34	1534.41	4.9	1.32	24.1	17.3	31.12	4.01	205.7	367.47	46.59	17.09	87.94	11.37	51.8	81.8	121.87	1.261	0.01	0.64	0	0.05	61.93	5.78	61.03	62.17	53.05	0.15	57.83
5-Jan-24	10.05	0	9.68	818.61	18.66	1.32	23.82	16.76	108.26	4.44	175.32	333.3	216.01	19.82	109.92	13.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6-Jan-24	10.38	0	11.05	643.86	20.67	1.32	24.52	16.59	108.26	4.53	194.57	316.34	286.39	22.6	123.88	13.67	45.7	82.5	0.36	0.774	0.01	0.15	0	0.03	9.76	10.03	5.27	55.4	45.43	0.16	5.68
7-Jan-24	10.05	0	4.84	1103.52	20.66	1.32	23.28	17.29	105.16	4.14	95.5	332.96	367.39	20.93	99.07	12.19	3.8	358.8	0.42	0.376	0.01	0.62	21.99	0.02	69.66	4.93	16.09	60.13	1.71	0.16	6.25
8-Jan-24	9.89	0	3.72	1257.15	20.05	1.32	24	17.32	102.89	4.02	163.16	345.34	364.43	18.31	99.46	11.71	15.7	105.8	0.54	1.259	0.01	0.71	0	0.01	66.03	8.42	12.32	60.84	0	0.16	7.18
9-Jan-24	9.45	0	4.11	1310.62	20.53	1.32	23.89	16.98	100.98	4.97	200.36	335.82	363.93	20.66	91.88	7.14	29.8	138.4	0.7	1.266	0.02	0.66	0	0.1	67.05	5.35	1.08	68.11	0	3.58	6.32
10-Jan-24	9.94	0	4.54	1135.95	20.32	1.32	24.29	16.99	100.17	5.51	110.15	288.54	358.13	26.18	94.85	10.17	450.6	456.6	0.41	1.313	0.82	0.65	0	18.37	69.91	5.65	20.22	70.05	0	34.94	6.33
11-Jan-24	10.09	0	3.55	1476.63	20.95	1.32	25.83	17.61	99.93	4.9	178.17	299.78	353.39	24.62	94.3	8.77	168.8	419.9	241.73	1.293	0.75	0.64	37.24	22.07	69.38	4.63	19.72	69.98	0	34.2	57.13
12-Jan-24	10.22	0	2.93	1713.09	22.88	1.32	24.51	18.05	99.06	4.68	138.45	329.94	347.8	22.31	92.66	7.14	145.6	564.9	328.74	1.277	0.69	0.64	0	25.06	56.47	4.09	19.64	72.51	0	36.4	65.32
13-Jan-24	10.7	0	4.49	1996.59	23.42	1.32	24.44	19.14	98.24	4.87	61.6	328.35	348.64	22.87	80.88	10.42	488.2	118.2	264.36	1.259	0.02	0.64	0	0.72	53.57	4.61	56.78	73.42	0	5.5	40.37
14-Jan-24	10.58	32.43	2.37	2069.76	21.89	1.32	23.46	19.04	97.68	5.44	66.82	348.51	325.45	27.47	75.28	10.38	373.2	130.3	268.23	1.257	0.01	0.67	45.04	0.04	57.08	5.57	18.57	72.88	0	0.16	85.08
15-Jan-24	10.12	61.02	1.68	1878.3	22.26	1.32	24.51	19.56	97.47	5.92	119.7	358.33	337.13	30.14	78.38	9.85	86.6	133.4	479.75	1.256	0.01	0.56	0	0.05	55.35	4.48	0.23	68.05	0	0.16	86.43
16-Jan-24	11.32	49.21	2.02	2051.91	24.17	1.32	25.64	20.08	97.42	5.72	114.57	336.36	321.23	24.23	79.3	8.56	250.8	140.9	469.29	1.257	0.21	0.51	0	13.49	58.94	4.45	16.34	68.86	0	13.31	109.9
17-Jan-24	10.56	54.46	5.06	1865.07	24.07	1.32	25.62	19.12	97.5	5.74	122.18	323.85	301.41	28.62	75.17	6.68	68.9	650.1	410.13	1.275	0.7	0.53	11.18	28.05	63.59	6.43	8.2	69.49	46.57	35.88	78.14
18-Jan-24	9.76	61.13	4.9	1640.17	24.4	1.32	26.14	20.37	97.13	5.77	65.11	233.86	283.49	29.88	73.74	5.89	263.6	612.8	314.63	1.266	0.84	0.62	0	45.89	64.16	5.72	9.44	70.14	93.72	37.31	55.88
19-Jan-24	10.66	44	6.3	1600.24	23.78	1.32	24.91	20.6	96.68	4.9	79.54	249.33	287.14	22.19	61.99	6.88	281.1	628.4	354.71	1.281	0.81	0.65	0	34.4	63.79	5.1	11.63	70.9	47.57	36.66	62.59
20-Jan-24	9.99	53.08	9.09	1563.17	23.72	1.32	24.14	21.48	96.35	4.79	25.9	184.21	286.48	22.03	59.42	5.95	152.6	496.7	284.94	1.277	0.74	0.61	0	32.19	59.73	5.43	12.99	70.99	0	33.35	49.71
21-Jan-24	10.75	44.85	9.92	1093.43	22.51	1.32	24.65	19.61	96.21	4.55	100.17	313.94	284.91	21.66	65.1	5.36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22-Jan-24	10.45	51.93	44.93	790.63	22.71	1.32	25.72	18.31	95.69	4.55	190.29	319.65	246.24	17.25	70.73	6.72	836.1	414.1	333.14	1.266	0.81	0.59	0	54.85	59.63	6.72	17.18	70.45	0	37.66	85.77
23-Jan-24	11.52	57.55	3.12	1094.78	23.27	1.32	25.79	18.06	95.54	5.17	104.02	314.29	235.07	20.48	82.35	9.55	95.1	680.6	282.7	1.28	0.76	0.62	0	36.45	52.24	6.21	16.59	66.95	79.22	35.19	80.14
24-Jan-24	9.64	56.65	3.93	1242.83	23.29	1.32	26.87	17.67	95.09	5.61	126.58	361	227.27	23.25	88.05	10.37	46.8	546.1	350.15	1.273	0.76	0.64	0	39.66	62.03	5.87	13.17	72.61	0	36.4	71.93
25-Jan-24	10.7	61.16	3.11	1269.44	22.63	1.32	26.81	19.08	94.79	5.71	188.65	315.29	220.69	25.4	87.87	7.84	107.6	695.5	285.16	1.265	0.75	0.6	0	21.3	62.73	6.18	12.38	71.56	52.21	35.61	55.4
26-Jan-24	10.32	61.16	3.54	1158.98	20.67	1.32	27.31	19.47	94.51	5.54	156.32	313.31	228.4	23.44	85.77	6.31	261.3	569.4	407.62	1.271	0.78	0.62	38.02	24.54	57.86	5.49	16.91	73.25	0	31.31	50.59
27-Jan-24	10.49	58.78	6.64	1240	20.54	1.32	27.17	19.71	94.2	5.54	130.8	318.23	239.95	23.15	92.45	7.84	31.3	259.5	422.59	1.266	0.74	0.61	0	40.22	63.71	6.31	18.57	72.59	46.38	32.34	77.69
28-Jan-24	9.73	58.48	2.72	1266.61	20.04	1.32	28.64	18.04	94.15	5.55	110.47	367.89	227.78	24.26	96.46	6.49	43.1	503	376.96	1.282	0.74	0.64	0	39.38	65.51	7.38	16.43	75.68	0	29.61	49.28
29-Jan-24	9.38	57.36	14.27	722.6	27.57	1.32	26.52	15.5	93.76	5.48	161.51	316.7	213.89	22.83	82.29	4.41	16.6	671.7	313.27	0.416	0.61	0.65	0	15.97	68.75	2.19	12.11	72.01	14.74	6.81	64.15
30-Jan-24	NA	58.26	4.68	1362.6	23.24	1.32	26.9	18.87	94.46	5.63	117.55	192.23	209.19	23.91	92.48	8.26	0	441.2	377.26	-0.011	0.65	0.58	2.22	31.1	70.33	0.1	17.86	69.35	1.03	0.39	34.21
31-Jan-24	NA	53.9	5.63	1596.41	23.31	1.32	26.69	19.38	39.73	5.42	211.38	220.82	79.61	18.74	122.41	8.36	0	351.1	322.88	-0.011	0.75	0.65	2.22	37.22	65.48	0.1	14	66.01	1.03	0.42	70.19
MINIMUM	9.38	0.00	1.68	643.86	0.25	1.32	23.28	15.50	1.50	3.57	25.90	184.21	0.12	13.76	59.42	4.41	0.00	0.00	0.00	-0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MAXIMUM	11.52	61.16	44.93	2069.76	27.57	1.32	28.64	21.48	108.26	5.92	291.98	367.89	367.39	30.14	123.88	13.67	836.10	695.50	479.75	1.31	0.84	0.79	67.50	70.81	70.33	10.03	61.03	75.68	103.61	37.66	134.92
AVERAGE	10.29	31.46	6.96	1370.52	19.61	1.32	25.21	18.29	84.74	4.97	147.86	312.05	245.43	22.21	88.99	8.84	142.89	360.93	252.65	1.03	0.46	0.57	7.27	22.60	56.55	5.23	16.85	64.46	21.81	19.16	57.82

											SUMMAR	Y OF REAL	TIME STACI	K EMISSION	MONITOR	ING DATA	TRANSMIT	TED TO TN	PCB CARE A	IR CENTRE											
DAY WISE	РВ 4 _ СО	PB 5 _ CO	PB 6 _ CO	PB 7 _ CO	PB 4 _ PM	PB 5 _ PM	PB 6 _ PM	PB 7 _ PM	PB 4 _ SO2	PB 5 _ SO2	PB 6 _ SO2	PB 7 _ SO2	PB 4 _ NO2	PB 5_ NO2	PB 6 _ NO2	PB 7 _ NO2	SRP CO_ LK 1	SRP CO_LK_2	SRP CO_ RB # 3	SRP H2S_ LK 1	SRP H2S_ LK 2	SRP H2S_ RB#3	SRP NOX_ LK 1	SRP NOX_ LK 2	SRP NOX_ RB # 3	SRP PM_ LK 1	SRP PM_ LK 2	SRP PM_ RB # 3	SRP SO2_ LK 1	SRP SO2_ LK 2	SRP SO2_ RB # 3
иом		· · · · ·						(mg,	/Nm3)		I				I				KD#3		ppm	KD#3	I	Z	KD#3		mg/Nm3	KD#3	<u> </u>	ppm	KD#3
															Fel	p-24	1														
1-Feb-24	49.7	47.07	8.96	766.01	22.61	1.32	27.08	19.55	2.81	5	53.43	112.22	0.21	15.76	127.67	6.11	49.7	508.1	386.21	0.72	0.77	0.59	0	42.09	67.94	8.44	9.71	66.55	27.87	19.1	70.03
2-Feb-24	0.13	34.02	6.58	470.56	22.61	1.32	27.09	19.69	2.8	4.63	183.86	199.97	0.19	12.13	119.5	7.11	94.3	356	361.03	1.263	0.77	0.58	0	51.25	65.93	7.17	10.53	66.51	42.83	38.98	58.94
3-Feb-24	NA	40.7	6.33	887.22	22.61	1.32	27.41	19.84	2.78	4.56	305.66	363.39	0.17	9.12	109.36	10.49	252.5	444.4	217.22	1.27	0.8	0.67	0	47.02	67.23	8.12	11.65	65.6	0	35.87	32.38
4-Feb-24	NA	22.03	14.82	996.74	22.61	1.32	25.78	21.01	2.8	4.53	246.05	386.64	0.17	9.35	110.12	10.29	135.4	467.5	201.91	1.277	0.79	0.67	0	41.98	59.85	11.92	7.34	66.16	61.57	38.83	38.33
5-Feb-24	NA	32.69	11.31	1545.03	22.61	1.32	25.85	21.62	2.8	5.36	302.72	372.1	0.17	21.43	100.5	8.43	407.3	396.1	252.84	1.269	0.81	0.72	0	39.03	61.32	9.1	5.74	67.08	0	37.23	58.88
6-Feb-24	NA	58.02	24.11	1256.69	22.61	1.32	25.56	22.18	2.81	9.01	263.2	384.32	0.17	32.65	104.32	9.15	196.8	438.5	255.06	1.295	0.8	0.67	0	30.31	55.6	11.61	5.79	67.65	62.04	38.27	50.44
7-Feb-24	NA	66.7	14.36	1466.51	22.61	1.32	25.9	21.43	2.81	11.04	208.09	350.05	0.17	40.39	113.47	9.5	148.4	399.3	228.9	1.275	0.82	0.68	0	50.08	52.42	11.02	7.43	67.81	50.22	35.89	32.43
8-Feb-24	NA	66.57	2.15	866.73	22.61	1.32	25.9	20.86	2.81	11.64	286.43	287.58	0.16	59.96	97.2	5.39	81.1	400.8	289.08	1.282	0.83	0.66	0	41.04	56.7	14.06	11.53	74.06	0	30.32	44.69
9-Feb-24	NA	70.09	5.82	939.98	22.61	1.33	27.19	23.31	2.8	12.22	183.13	134.38	0.17	73.08	108.73	0.81	60.2	350	343.98	1.274	0.82	0.63	0	33.88	53.64	12.68	13.33	76.19	96.2	34.35	23.3
10-Feb-24	NA	68.28	5.83	585.77	22.6	1.33	26.29	22.87	2.75	12.95	98.79	89.34	0.22	79.73	101.97	0.37	61.6	130.1	258.33	1.278	0.83	0.69	0	48.77	60.98	22.19	14.09	75.65	0	40.16	28.09
11-Feb-24	NA	71.25	9.36	871.38	22.6	1.33	25.45	22.79	2.72	13.53	168.04	115.02	0.22	84.69	102.68	0.49	294	308.6	313.82	1.296	0.84	0.68	25.73	39.14	59.61	19.9	12.74	75.55	0	39.06	17.6
12-Feb-24	NA	69.1	4.24	1017.61	22.6	1.34	24.9	23.12	2.74	14	272.89	173.03	0.2	90.35	91.34	0.5	39.7	210.4	358.17	1.275	0.93	0.58	0	33.87	64.17	40.2	16.51	75.4	43.76	41.23	21.82
13-Feb-24	NA	39.44	3.59	831.86	22.61	1.38	26.09	23.07	2.76	14.08	191.7	173.54	0.23	90.29	104.65	0.7	601.6	594.3	367.47	1.286	0.85	0.63	0	28.52	63.78	32.46	19.27	75.46	88.25	40.96	21.52
14-Feb-24	NA	58.68	7.15	926.1	22.61	1.39	25.87	24.63	2.78	13.84	96.13	144.56	0.25	91.88	108.5	1.86	343.6	272.4	278.93	1.276	0.78	0.64	0	34.23	55.79	18.9	16.05	75.31	0	35.91	13.81
15-Feb-24	NA	95.83	8.33	1001.77	22.61	1.39	25.37	24.23	2.79	14.01	117.92	154.25	0.22	92.82	103.96	1.35	97.6	499.4	414.6	1.297	0.89	0.63	0	31.95	60.08	14.86	16.22	79.37	33.59	29.9	22.04
16-Feb-24	NA	66.75	5.21	866.58	22.61	5.4	25.9	24.41	2.77	14.66	85.87	120	0.21	95.21	109.25	0.7	133.6	406.1	394.56	1.272	0.93	0.6	0	47.8	58.15	9.73	51.72	80.33	48.46	25.78	16.8
17-Feb-24	NA	59.04	4.85	633.26	22.61	10.58	25.73	23.55	2.8	14.43	81.92	72.73	0.21	96.07	103.63	0.41	219.7	465.8	173.68	1.28	0.83	0.63	0	35.46	63.99	16.04	48.34	80.71	0	34	8.18
18-Feb-24	NA	38.19	3.64	954.63	22.61	5.07	26.29	25.05	2.79	11.86	143.39	150.35	0.21	91.04	102.85	0.25	100.1	548.8	86.34	1.283	0.91	0.63	33.05	26.9	60.21	8.87	26.78	80.77	0	29.83	6.48
19-Feb-24	NA	37.25	5.26	871.14	22.61	1.57	27.19	25.55	2.8	123.16	174.86	136.83	0.22	79.53	100.65	0.14	2.6	526.7	108.81	0.22	0.83	0.62	7	13.69	56.83	29.86	15	80.8	3.37	0.6	6.48
20-Feb-24	NA	30.42	3.23	1119.9	22.61	1.54	27.59	25.05	2.77	243.99	176.58	170.92	0.22	91.32	97.41	0.09	-2.2	496.5	69.96	-0.008	0.8	0.67	2.22	23.51	58.72	28.56	2.33	81.07	1.03	0.42	6.48
21-Feb-24	NA	31.71	5.15	1000.14	22.61	2.8	27.51	25.35	2.77	274.42	223.49	225.34	0.24	106.77	91.61	0.19	-2.2	631.1	118.2	-0.008	0.82	0.67	2.22	28.38	53.89	0.1	2.01	79.23	1.03	0.41	17.16
22-Feb-24	NA	22.21	3.99	937.05	22.61	6.18	27.35	24.72	2.8	254.19	93.83	120.8	0.23	102.7	102.41	0.06	110.4	797.5	376.14	0.837	0.84	0.63	0	12.05	51.27	13.3	1.91	76.57	0	17.14	33.66
23-Feb-24	NA	30.77	5.48	637.27	22.61	10.18	26.67	24.7	2.81	232.52	117.27	107.38	0.25	85.1	104.05	0.04	104.9	489	409.58	1.265	0.8	0.63	0	26.31	55.53	14.91	2.69	76.7	44.13	32.5	17.07
24-Feb-24	NA	10.4	3.72	842.7	22.61	9.94	28.6	26.33	2.81	198.39	184.03	115.98	0.24	71.51	106.89	0.03	32.3	590.3	290.68	1.266	0.8	0.68	47.05	11.04	55.33	7.94	2.03	75.67	0	34.22	9.06
25-Feb-24	NA	15.33	7.92	716.73	22.61	9.69	19.56	26.95	2.81	280.02	269.11	78.4	0.25	55.75	92.38	0.08	17.9	610.4	273.27	1.268	0.83	0.68	41.93	10.64	57.46	7.56	2.03	75.41	81.19	41.13	97.47
26-Feb-24	NA	23.25	NA	591.04	22.61	7.01	2.23	20.61	2.81	300.8	NA	25.05	0.26	79.4	NA	0.32	161	616.7	396.56	1.281	0.77	0.64	0	9.32	56.48	8.14	2.45	77.24	0	40.07	53.63
27-Feb-24	NA	20.79	NA	597.44	22.61	7.37	2.39	16.03	2.8	305.53	NA	33.67	0.26	69.62	NA	0.18	92.6	623.5	371.07	1.28	0.82	0.62	0	18.29	61.57	9.14	3.03	79.95	49.96	45.45	16.76
28-Feb-24	NA	21.22	NA	559.37	22.61	7	2.48	15.35	2.81	329.56	NA	139.83	0.27	76.85	NA	0.09	33.4	333.9	287.02	1.282	0.87	0.65	0	39.18	59.77	13.77	5.8	82.75	0	40.96	25.22
29-Feb-24	NA	20.05	NA	982.26	22.62	7	2.5	15.43	2.81	316.92	NA	185.26	0.27	82.79	NA	1.43	25.1	258.3	344.89	1.269	0.79	0.62	0	20.3	59.76	13.75	5.24	83.53	0	40.79	39.45
MINIMUM	0.13	10.40	2.15	470.56	22.60	1.32	2.23	15.35	2.72	4.53	53.43	25.05	0.16	9.12	91.34	0.03	-2.20	130.10	69.96	-0.01	0.77	0.58	0.00	9.32	51.27	0.10	1.91	65.60	0.00	0.41	6.48
MAXIMUM		95.83	24.11	1545.03	22.62	10.58	28.60	26.95	2.81	329.56	305.66	386.64	0.27	106.77	127.67	10.49	601.60	797.50	414.60	1.30	0.93	0.72	47.05	51.25	67.94	40.20	51.72	83.53	96.20	45.45	97.47
AVERAGE	24.92	43.72	7.26	887.57	22.61	3.84	22.89	22.39	2.79	105.20	181.14	176.65	0.22	68.53	104.60	2.64	134.24	454.16	283.73	1.12	0.83	0.64	5.49	31.59	59.10	14.63	12.04	75.35	25.36	31.70	30.63

											SUMMAR	Y OF REAL	TIME STAC		MONITOR	ING DATA	TRANSMIT	TED TO TNE	PCB CARE A	IR CENTRE											
DAY WISE	PB 4 _ CO	PB 5 _ CO	PB 6 _ CO	PB 7 _ CO	PB 4 _ PM	PB 5 _ PM	PB 6 _ PM	PB 7 _ PM	PB 4 _ SO2	PB 5 _ SO2	PB 6_ SO2	PB 7 _ SO2	PB 4 _ NO2	PB 5_ NO2	PB 6 _ NO2	PB 7 _ NO2	SRP CO_ LK_1	SRP CO_LK_2	SRP CO_ RB # 3	SRP H2S_ LK_1	SRP H2S_ LK_2	SRP H2S_ RB#3	SRP NOX_ LK_1	SRP NOX_ LK_2	SRP NOX_ RB # 3	SRP PM_ LK 1	SRP PM_ LK 2	SRP PM_ RB # 3	SRP SO2_ LK_1	SRP SO2_ LK_2	SRP SO2_ RB # 3
UOM								(mg/	Nm3)												ppm						mg/Nm3			ppm	
															Ma	r-24															
1-Mar-24	NA	20.98	35.38	1738.24	22.62	7.02	7.4	15.93	2.81	253.77	49.96	350.35	0.27	88.81	88.13	19.62	18.2	321.9	385.54	1.275	0.84	0.63	33.51	13.02	60.9	6	6.19	89.24	83.03	39.54	21.09
2-Mar-24	NA	25.73	15.71	2860.48	22.62	7	16.36	16.04	2.82	294.49	140.02	341.71	0.27	81.55	135.29	15.05	40.2	637.5	289.96	1.288	0.78	0.71	0	6.27	61.63	6.81	5.29	88.5	0	42.7	39.53
3-Mar-24	NA	40.5	9.83	4455.17	22.61	8.19	25.21	16.79	2.81	215.76	84.08	402.39	0.22	79.83	165.95	16.64	21.4	414.4	311.56	1.262	0.81	0.69	36.59	17.02	62.53	6.74	9.58	92.49	140.27	42.78	28.18
4-Mar-24	NA	20.63	7.16	2097.77	22.61	8.66	25.04	18.41	2.8	300.64	166.24	200.18	0.26	75.28	91.91	3.3	14.8	410.4	334.71	1.269	0.77	0.63	0	8.35	59.99	7.32	14.26	95.17	72.97	44.96	49.78
5-Mar-24	NA	18.75	6.7	917.05	22.62	8.86	24.91	16.86	2.82	302.41	72.96	77.49	0.24	75.98	69.53	0	30.7	516.9	268.55	1.27	0.68	0.69	0	5	59.55	6.73	13.63	89.63	36.85	38.23	31.6
6-Mar-24	NA	27.75	5.72	3272.95	22.62	9	25.09	17.26	2.82	294.72	47.95	248.4	0.24	83.52	81.4	12.38	17	568	195.31	1.28	0.7	0.79	0	5.79	53.25	6.88	14.6	86.68	63.18	38.78	52.95
7-Mar-24	NA	23.39	4.55	3724.22	22.62	9.18	25.04	16.73	2.82	269.27	72.13	370.54	0.23	101.88	86.38	15.9	16.1	28.3	347.3	1.251	0.02	0.69	0	0.28	52.16	10.89	5.66	88.38	158.59	11	80.83
8-Mar-24	NA	22.7	49.94	2519.49	22.61	9.28	24.91	15.13	2.81	241.57	162.76	337.69	0.26	89.29	110.09	19.15	20.6	27.2	188.62	1.256	0.01	0.78	74.37	0.09	55.4	5.72	0.57	97.21	68.51	0.16	6.48
9-Mar-24	NA	14.51	10.09	3231.26	22.61	9.34	24.9	14.54	2.81	185.28	111.9	302.32	0.24	86.34	197.15	19.18	19.1	188.5	186.25	1.256	0.01	0.79	0	0.09	55.08	8.03	0.23	97.81	38.6	0.16	6.54
10-Mar-24	NA	9.95	13.41	3773.3	22.61	9.38	25.29	14.61	2.8	131.39	129.82	281.61	0.26	81.15	226.31	18.32	18.6	170.5	110	1.254	0.02	0.8	0	0.09	52.12	9.37	19.03	97.31	22.31	0.16	6.49
11-Mar-24	NA	13.06	19.28	2927.33	22.61	9.44	24.93	13.81	2.79	111.95	150.33	242.5	0.27	80.54	200.01	15.91	28.3	158.9	183.95	1.254	0.02	0.81	0	0.07	53.61	8.52	0.25	96.57	21.14	0.16	16.15
12-Mar-24	NA	16.09	23.44	3563.37	22.61	9.55	25.24	14.5	2.8	94.97	187.92	290.64	0.27	80.93	189.44	16.4	22.6	276.3	119.14	1.26	0.25	0.81	0	0.43	0	0	15.3	96.05	65.45	15.67	24.89
13-Mar-24	9.81	14.4	26.5	1837.16	22.61	9.56	24.59	10.43	2.8	163.97	151.24	161.33	0.25	97.34	198.74	13.62	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14-Mar-24	9.63	9.34	36.46	12.23	22.61	9.62	24.54	1.65	33.51	196.52	226.67	0	71.16	83.58	135.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15-Mar-24	11.06	5.92	19.46	8.88	22.61	9.66	24.46	1.59	94.7	287.97	235.96	0	198.82	66.86	96.39	0	17.5	434.2	106.09	1.243	0.74	0.79	0	8.23			14.4	94.44	45.27	36.59	53.16
16-Mar-24	10.3	15.42	14.58	9.72	22.61	26.43	24.63	0.17	97.05	244.76	253.69	0	172.62	71.6	114.1	0	16.6	570.5	155.82	1.282	0.76	0.77	0	14.86	56.76	17.72	7.59	95.07	76.54	38.91	67.44
17-Mar-24	10.55	27.66	8.68	8.45	22.61	33.14	24.84	0.03	100.12	286.36	209.91	0	153.25	73.49	126.42	0	22	380.5	240.62	1.268	0.65	0.8	0	9.14	57.46		9.55	93.89		86.22	249.33
18-Mar-24	11.19	31.38	9.72	7.69	12.68	29.27	24.85	0.03	101.45	280.57	144.23	0	161.18	91.95	91.28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19-Mar-24	10.32	27.4	12.17	29.35	6.26	29.28	24.77	1.44	101.53	182.4	206.28	0	162.2	90.76	126.16	8.36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20-Mar-24	10.62	27.74	26.63	8.46	1.17	28.47	25.36	9.06	99.39	178.35	232.12	182.17	148.46	77.1	110.21	57.6	18.2	463.1	211.91	1.262	0.71	0.79	0	31.74	57.56	11.36	7.01	94.34	25.92	35.58	19.16
21-Mar-24	10.72	25.09	36.36	4.66	5.41	27.54	25.64	15.77	99.52	131.39	178.39	224.58	143.09	68.84	132.49	60.34	18.6	840	271.9	1.308	0.62	1.38	0	17.83	60.03	6.18	6.54	102.9	42.14	506.16	19.9
22-Mar-24	11.48	21.18	19.18	80.26	0.81	28.59	25.84	19.75	168.86	125.23	63.03	206.91	348.69	66.07	104.8	38.05	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23-Mar-24	10.57	17.54	16.51	139.4	0.85	29.82	25.32	24.37	249.21	174.06	63.31	264.73	0	73.74	100.12	32.96	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24-Mar-24	11.32	20.22	14.57	154.58	9.38	30.56	24.93	28.81	10.08	188.84	135.89	154.72	309.62	68.52	166.72	33.98	20.9	849.4	200.55	1.303	0.59	1.39	0	11.24	60.35	8.34	11.34	95.53	38.01	29.5	14.3
25-Mar-24	10.85	22.57	15.57	109.29	11.57	32.16	24.02	31.34	1.71	220.19	279.2	248.4	308.11	70.64	140	28.71	16.5	838.6	208.02	1.262	0.62	0.75	0	11.49	57.6	7.97	8.31	96.69	46.16	37.42	23.31
26-Mar-24	11.18	27.38	20.77	41.81	12.83	30.88	23.88	33.29	113.49	191.46	285.91	234.95	337.15	64.08	126.65	13.92	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
27-Mar-24	8.86	27.01	24.77	111.29	14.23	26.01	24.22	32.49	76.31	131.42	307.14	102.91	369.24	56.14	146.81	3.46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
28-Mar-24	10.29	19.31	28.68	38.04	15.05	26.15	24.47	31.1	91.26	89.42	262.69	121.45	328.78	57.96	162.97	20.96	19.7	537.4	234.74	1.254	2.05	2.16	0	8.51	59.45	5.44	42.64	88.8	34.45	36.27	74.61
29-Mar-24	10.2	16.75	28.65	126.53	15.9	25.71	25.43	30.72	1.15	74.29	242.12	240.65	251.47	55.09	186.35	29.13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
30-Mar-24	10.22	18.42	29.41	29.08	17.43	26.09	25.46	31.19	0.72	114.39	218.37	123.5	241.72	62.7	211.8	35.04	23.4	699.2	276.11	1.243	0.3	1.95	0	3.39	50.42	4.56	2.57	88.57	101.93	27.17	37.79
31-Mar-24	10.83	13.08	52.45	7.25	66.19	26.88	25.71	31.24	0.61	135.45	238.02	94.35	215.12	59.25	214.95	38.26	22.6	671.4	186.53	1.249	0.31	0.73	0	3.47	57.55	20.72	2.66	95.02	130.4	40.88	41.93
MINIMUM	8.86	5.92	4.55	4.66	0.81	7.00	7.40	0.03	0.61	74.29	47.95	0.00	0.00	55.09	69.53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MAXIMUM	11.48	40.50	52.45	4455.17	66.19	33.14	25.84	33.29	249.21	302.41	307.14	402.39	369.24	101.88	226.31	60.34	40.20	849.40	385.54	1.31	2.05	2.16	74.37	31.74	62.53	20.72	42.64	102.90	158.59	506.16	249.33
AVERAGE	10.53	20.70	20.72	1220.80	18.52	19.06	24.11	16.94	47.65	196.56	171.30	187.31	126.58	76.16	139.82	18.91	14.95	322.68	161.72	0.90	0.40	0.66	4.66	5.69	38.11	5.70	7.01	66.46	43.72	37.06	31.14

ANNEXURE III

TNPCB - WATER ANALYSIS REPORT

Report No. DEL/DGL/860

Tamil Nadu Pollution Control Board

DISTRICT ENVIRONMENTAL LABORATORY, DINDIGUL-624 004.

REPORT OF ANALYSIS

1. Name and Address of the	e Seader	: The District Environmental Engineer, Tamil Nadu Pollution Control Board,	
2. Date and time of Collecti	on	Karur. : 21.02.2024 at 12.20PM - 12.40PM	
3. Date and time of Receipt	at Laboratory	: 21.02.2024 at 04.45PM.	
4. Condition of Seals, Faster	ning and Container	 Sealed and Fastened Condition in Polythene Carbuoy of 2.5 Lit x 5 Nos. 	
5. Nature and Number of Sa	ump.es	: Five Nos. of Trade Effluent Samples.	
DEE Code No.	Lab Code No.	Point of Collection	T/UT/PT/NM
315/AEE/KAR 316/AEE/KAR 317/AEE/KAR 318/AEE/KAR 319/AEE/KAR	2090 2091 2092 2093 2094	Low BOD Stream Inlet of ASL Combined Effluent (Low & High BOD) Secondary Clarifier Outlet of ETP Seepage Canal	Untreated Partially treated Treated
	4074	High BOD Stream	Untreated

Seff 20 3 44 Environmental Scientist

Deputy Chief Scientific Officer, DEL, TNPC Board, Dindigul -----Page 2 of 3-----

SI.No	Parameters	LAB Code	2090	2091	2092	2093	2094
		DEE Code	315/AEE/KAR	316/AEE/KAR	317/AEE/KAR	-000004777	2094
1.	pH		6.02	and the second sec	ST/ALE/KAR	318/AEE/KAR	319/AEE/KAF
2.	Total Summer L. L.C.		6.03	6.74	7.75	7.83	474
100	Total Suspended Sol	(764	316	22		4.74
3.	Total Dissolved Soli	ds at 180° (mg/l)		510	22	08	1920
4.		(mg/l)	2216	2252	1284	1064	20.00
4.	Chloride (as Cl)	(mg/l)	965	1010	10.2.5.00	1004	2060
5.	Sulphate (as SO ₄)	(mall)		1010	735	440	710
		(mg/l)	597	499	290	248	
6.	BOD 3 days at 27° C	(mg/l)	836	200		240	224
7.	Chemical Oxygen De	Contraction of the second	and the second sec	300	18	06	2350
0			3320	1280	176	10	C.C.S.S.M.
8.	Ammonical Nitrogen	(mg/l)	59.9	21.0		48	9280
9.	Total Kjeldhal Nitrog			31.9	<5.0	<5.0	75.6
		en (mg/l)	90.7	52.6	<5.0		
10.	Sulphide (as S)	(mg/l)	8.8		-5.0	<5.0	107.5
11.	Phenolic Commons de		0.0	4.0	<1.0	<1.0	9.6
1	Phenolic Compounds	(as Phenol) (mg/l)	0.087	0.043	<0.005		5.0
12.	Percent Sodium	(%)	25		-0.005	<0.005	0.097
-	Contraction Sector Sector	(10)	25	23	18	21	24

End of the Report

Forfalal24 Environmental Scientist

Deputy Chief Scientific Officer, DEL, TNPC Board, Dindigul.

----Page 3 of 3----

Report No. DEL/DGL/773

Tamil Nadu Pollution Control Board

DISTRICT ENVIRONMENTAL LABORATORY, DINDIGUL-624 004.

REPORT OF ANALYSIS

1. Name and Address of the Sender	: The District Environmental Engineer, Tamil Nadu Pollution Control Board,	
 Date and time of Collection Date and time of Receipt at Laboratory 	Karur. : 24.01.2024 at 12.25PM - 12.45PM : 24.01.2024 at 05.30PM.	
4. Condition of Seals, Fastening and Container	: Sealed and Fastened Condition in	
5. Nature and Number of Samples	Polythene Carbuoy of 2.5 Lit x 5 Nos. : Five Nos. of Trade Effluent Samples	

DEE Code No.	Lab Code No.	Point of Collection	T/UT/PT/NM
274/AEE/KAR	1866	Low BOD Stream	Hereit
275/AEE/KAR	1867	Inlet of ASL Combined Effluent (Low & High BOD)	Untreated
276/AEE/KAR	1868	Secondary Clarifier Outlet of ETP	Partially treated
77/AEE/KAR	1869	Seepage Canal	Treated
278/AEE/KAR	1870	High BOD Stream	
		righ bob stream	Untreated

Environmental Scientist

Deputy Chief Scientific Officer, DEL, TNPC Board, Dindigul. -----Page 2 of 3-----

		LAB Code	1866	1867	1868	1869	1870
SLNo	Parameters	DEE Code	274/AEE/KAR	275/AEE/KAR	276/AEE/KAR	277/AEE/KAR	278/AEE/KAR
1.	pН		6.19	6.85	7.78	8.10	4.18
2.	Total Suspended Sol	Total Suspended Solids (mg/l)		232	16	20	1750
3.	Total Dissolved Solids at 180° C (mg/l)		2428	2256	1392	1428	2040
4.	Chloride (as Cl) (mg/l)		1710	1685	665	680	810
5.	Sulphate (as SO ₄) (mg/l)		235	392	235	315	393
6.	BOD 3 days at 27 ⁰ C (mg/l)		340	124	14	07	1834
7.	Chemical Oxygen Demand (mg/l)		1280	720	96	40	5600
8.	Ammonical Nitrogen (mg/l)		48.2	30.2	6.78	<5.0	74.5
9.	Total Kjeldhal Nitrogen (mg/l)		81.86	64.40	20.16	7.8	95.8
10.	Sulphide (as S) (mg/l)		9.6	8.8	<1.0	<1.0	64.0
11.	Phenolic Compounds (as Phenol) (mg/l)		0.089	0.084	<0.0005	<0.0005	0.15
12.	Percent Sodium	(%)	24	16	23	30	28

End of the Report

6 Environmental Scientist

Deputy Chief Schenhific Officer, DEL, TNPC Board, Dindigul.

----Page 3 of 3----

Report No. DEL/DGL/720

Tamil Nadu Pollution Control Board

DISTRICT ENVIRONMENTAL LABORATORY, DINDIGUL-624 004.

REPORT OF ANALYSIS

1. Name and Address of the Sender	: The District Environmental Engineer, Tamil Nadu Pollution Control Board,
 Date and time of Collection Date and time of Receipt at Laboratory Condition of Seals, Fastening and Container 	Karur. : 29.12.2023.at 12.25PM - 12.45PM : 29.12.2023at 4.45PM. : Sealed and Fastened Condition in Polythese Codeses 62.61 in 611

5. Nature and Number of Samples

Polythene Carbuoy of 2.5 Lit x 5 Nos. : Five Nos. of Trade Effluent Samples

DEE Code No.	Lab Code No.	Point of Collection	T/UT/PT/NM
223/AEE/KAR	1720	Low BOD Stream	
224/AEE/KAR	1721	Inlet of ASL Combined Effluent (Low & High BOD)	Untreated
225/AEE/KAR	1722	Secondary Clarifier Outlet of ETP	Partially treated
226/AEE/KAR	1723	Seepage Canal	Treated
227/AEE/KAR	1724	High BOD Stream	
	2121235	ruga bob sucan	Untreated

Environmental Scientist

02 nou Deputy Chief Scientific Officer, DEL, TNPC Board, Dindigul. ----- Page 2 of 3-----

		LAB Code	e 1720	1721	1722	1723	1724
SLNo	Parameters	DEE Code	223/AEE/KAR	224/AEE/KAR	225/AEE/KAR	226/AEE/KAR	227/AEE/KAR
1.	pH		6.39	6.82	7.96	8.11	4.51
2.	Total Suspended Solids (mg/l)		180	154	30	22	1340
3.	Total Dissolved Solids at 180° C (mg/l)		1812	2372	1602	1588	1880
4.	Chloride (as Cl) (mg/l)		785	660	315	605	815
5.	Sulphate (as SO ₄)	(mg/l)	290	336	89	398	436
6,	BOD 3 days at 27 ^o C (mg/l)		135	151	09	18	736
7.	Chemical Oxygen Demand (mg/l)		400	456	72	112	2200
8,	Ammonical Nitrogen (mg/l)		31.36	22.96	5.6	<5.0	37.52
9.	Total Kjeldhal Nitrogen (mg/l)		66.08	49.84	12.3	6.72	77.28
10.	Sulphide (as S) (mg/l)		3.2	1.6	1.6	1.2	14.8
11.	Phenolic Compounds (as Phenol) (mg/l)		0.18	0.047	<0.0005	<0.0005	0.07
12,	Percent Sodium	(%)	15	13	13	10	17

End of the Report

6 Environmental Scientist de

Deputy Chief Scientific Officer, DEL, TNPC Board, Dindigul.

---- Page 3 of 3-----

Report No. DEL/DGL/627

Tamil Nadu Pollution Control Board

DISTRICT ENVIRONMENTAL LABORATORY, DINDIGUL-624 004.

REPORT OF ANALYSIS

1. Name and Addres	s of the Sender	: The District Environmental Engineer, Tamil Nadu Pollution Control Board,	
 Date and time of 0 Date and time of 1 Condition of Seals 	Collection Receipt at Laboratory s, Fastening and Container	 Karur. 28.11.2023 at 11.25 AM to 11.45 AM. 28.11.2023 at 04.00 PM. Sealed and Fastened Condition in Polythene Carbuoy of 2.5 Lit x 5 Nos. 	
5. Nature and Number of Samples		: Five Nos. of Trade Effluent Samples	
DEE Code No.	Lab Code No.	Point of Collection	T/UT/PT/NM
192/AEE/KAR 193/AEE/KAR 194/AEE/KAR 195/AEE/KAR	1489 1490 1491 1492	Low BOD Stream Inlet of ASL Combined Effluent (Low & High BOD) Secondary Clarifier Outlet of ETP	Untreated Partially treated Treated

Clarifier Outlet of ETP 1492 Seepage Canal 1493 High BOD Stream

Salash Environmental Scientist

196/AEE/KAR

Deputy Chief Scientific Officer, DEL, TNPC Board, Dindigul.

----- Page 2 of 3------

Untreated

SLNo	Parameters	LAB Code	1489 192/AEE/KAR	1490 193/AEE/KAR	1491 194/AEE/KAR	1492 195/AEE/KAR	1493 196/AEE/KAR
		DEE Code					
1.	pH		5.97	6.90	7.95	8.01	4.35
2.	Total Suspended Solids (mg/l)		382	168	68	12	1028
3.	Total Dissolved Soli	ds at 180° C (mg/l)	2324	1956	1444	1382	2344
4,	Chloride (as Cl) (mg/l)		840	640	420	510	540
5.	Sulphate (as SO ₄) (mg/l)		522	186	281	. 368	292
6.	BOD 3 days at 27 ⁰ C (mg/l)		648	365	43.2	4.4	`386
7,	Chemical Oxygen Demand (mg/l)		3840	1456	216	40	7680
8.	Ammonical Nitrogen (mg/l)		41.4	62.7	19	<5.0	66.1
9.	Total Kjeldhal Nitrogen (mg/l)		71.7	90.7	41.4	6.16	121.0
10.	Sulphide (as S) (mg/l)		6.4	10.4	1.6	<1.0	24
11.	Phenolic Compounds (as Phenol) (mg/l)		0.074	0.083	0.018	<0.0005	0.098
12.	Percent Sodium	(%)	33	42	31	28	36

End of the Report

Satas 1/24 Environmental Scientist

Deputy Chief Scientific Officer, DEL, TNPC Board, Dindigul.

-----Page 3 of 3-----

Report No. DEL/DGL/546

Tamil Nadu Pollution Control Board

DISTRICT ENVIRONMENTAL LABORATORY, DINDIGUL-624 004.

REPORT OF ANALYSIS

 Name and Address Date and time of C Date and time of R Condition of Seals, Nature and Number 	ollection eccipt at Laboratory Fastening and Container	 The District Environmental Engineer, Tamil Nadu Pollution Control Board, Karur. 26.10.2023 at 11.25 AM to 11.50 AM. 26.10.2023 at 04.25 PM. Sealed and Fastened Condition in Polythene Carbuoy of 2.5 Lit x 6 Nos. Five Nos. of Trade Effluent Samples & One No. of Sewage Sample, 		
DEE Code No.	Lab Code No.	Point of Collection		T/UT/PT/NM
174/AEE/KAR	1291	Low BOD Stream		Untreated
175/AEE/KAR	1292	Inlet of ASL Combined Effluent (Low & High BOD)		Partially treated
176/AEE/KAR	1293	Secondary Clarifier Outlet of ETP		Treated
177/AEE/KAR	1294	Seepage Canal		Treaters
178/AEE/KAR	1295	High BOD Stream		Untreated
179/AEE/KAR	1296	Outlet of Colony STP	*	Treated

12000 64

Env.Scientist

22.52

Deputy Chief Sciefitific Officer, DEL, TNPC Board, Dindigul.

----- Page 2 of 3------

SLNo		LAB Code	6	1291	1292	1293	1294	1295	130/
SLNO	Parameters	DEE Code		174/AEE/KAR	175/AEE/KAR	176/AEE/KAR	177/AEE/KAR	1.51155700	1296
1.	pH			8.23	8.55	and a second		178/AEE/KAR	179/AEE/KAR
2;	Total Suspended Soli	de la	them	01012010		7.95	7.97	4.76	7.41
	III - Contract + Contract Contractor		mg/l)	348	108	32	08	1860	08
3.	Total Dissolved Solid	ls at 180° C (i	mg/l)	2868	1640	1208	1708	1000.025	
4.	Chloride (as Cl)	(1	mg/l)	990	480	Constants		1700	-
5.	Sulphate (as SO4)			1207281	400	350	490	410	-
			mg/l)	370	534	169	414	181	
6.	BOD 3 days at 27° C	(п	mg/I)	624	86	26	15	1.	
7.	Chemical Oxygen De	mand (n	ng/l)	2200	576	264		2730	03
8.	Ammonical Nitrogen	10	(hom	CAMPRO .		204	104	8320	48
2150		1.0	mg/l)	52.6	39.8	13.4	<5.0	94.1	<5.0
9.	Total Kjeldhal Nitroge	en (m	ng/l)	70.7	55.4	23.5	14	108.1	
10.	Sulphide (as S)	(m	ng/l)	10.4	2.4	1.2			-
11	Total Nitrogen (as N)	(m	ng/1)			1.2	<1.0	18.4	-
12.	pero volgo di setto di testi di te			-				-	0.89
	Phenolic Compounds	(as Phenol) (m	1g/l)	0.150	0.084	<0.0005	<0.0005	0.163	- Cardeneo
13.	Percent Sodium	((%)	35	27	29	Contraction of the second		-
14.	Fecal Coliform		(Dag			29	26	31	-
	Coliform - Facility		ng/l)		*	*	. *	*	

*Fecal Coliform - Facility is not available. End of the Report

62 2022

Env.Scientist

Deputy Chief Selentific Officer, DEL, TNPC Board, Dindigul.

-----Page 3 of 3-----

LATEST NABL ACCREDITED & MoEF&CC RECOGNIZED THIRD PARTY LAB – WATER ANALYSIS TEST REPORT

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	CTL/CH/N-38345/2023-24 & 03.04.2024
Sample Number	N-38345/23-24
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],
Address	Kagithapuram - 639 136,
	Karur District, Tamil Nadu.
Sample Drawn by	Laboratory
Sample Name	Effluent Water
Sample Description	Effluent Water
Sampling Location	High BOD Stream - Inlet
GPS Reading	11°03'19.32''N & 77°59'56.616''E
Sample Drawn on	26.03.2024
Sample Received on	29.03.2024
Sampling Plan & Procedure	Grab Sample & CTL/QSP/09
Sample Quantity	2 Litres
Sample Condition	Good & Received in Plastic Container
Environmental Conditions	Temperature- 32.1°C and Humidity- 57.0%
Equipment used for Sampling	NA
Analysis Started on	29.03.2024
Analysis Completed on	03.04.2024

Test Results:

The above sample tested as received, and results are as follows:

S. NO	PARAMETERS	METHOD	UNITS	RESULTS
1	pH @ 25°C	IS 3025 (Part 11)-1983 (RA.2017)	-	5.1
2	Colour	IS : 3025 (Part 4)- 2021	HU	500
3	Total Dissolved Solids	IS 3025 (Part 16)-1984 (RA.2017)	mg/l	3640
4	Total Suspended Solids	IS 3025 (Part 17) -1984 (RA.2021)	mg/l	3880
5	Biochemical Oxygen Demand (BOD) 3 days at 27°C	IS 3025 (Part 44) -1993 (RA.2019)	mg/l	4798
6	Chemical Oxygen Demand (COD)	IS 3025 (Part 58)-2006 (RA:2017)	mg/l	6124
7	Chloride as Cl	IS 3025 (Part 32)-1988 (RA.2019)	mg/l	511
8	Sulphate as SO ₄	IS 3025 (Part 24/sec -1) - 2022	mg/l	383
9	Oil & Grease	IS 3025 (Part 39) - 2021	mg/l	< 2
10	Ammonical Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	32
11	Total Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	83
12	Total Kjeldahl Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	66
13	Phenolic Compounds as C ₆ H ₅ OH	IS 3025 (Part 43/sec 1) 2022	mg/l	BDL(DL:0.001)
14	Percent Sodium	CTL/SOP/WATER/60-2022	%	58.68
15	Sulphide as S	IS 3025 (Part 29)-1986 (RA.2019)	mg/l	31.2

BDL - Below Detection Limit; DL - Detection limit;

U.S.M. Coc

Verified by

For Chennai Testing Laboratory Pvt ltd

A. Dajumu

Authorised Signatory

A. RAJKUMAR Head - Water & Soli Division (CHEMICAL)

Page 1 of 1

The figures and that he was in entropy, whittee with he may maturate persons.

END OF REPORT

The Agent & beaut pright with our of the addresses is proved with the east balance.

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	CTL/CH/N-38346/2023-24 & 03.04.2024
Sample Number	N-38346/23-24
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],
Address	Kagithapuram - 639 136,
	Karur District, Tamil Nadu.
Sample Drawn by	Laboratory
Sample Name	Effluent Water
Sample Description	Effluent Water
Sampling Location	Low BOD Stream - Inlet
GPS Reading	11°03'16.446''N & 77°59'50.595''E
Sample Drawn on	26.03.2024
Sample Received on	29.03.2024
Sampling Plan & Procedure	Grab Sample & CTL/QSP/09
Sample Quantity	2 Litres
Sample Condition	Good & Received in Plastic Container
Environmental Conditions	Temperature- 32.1°C and Humidity- 57.0%
Equipment used for Sampling	NA
Analysis Started on	29.03.2024
Analysis Completed on	03.04.2024
Test Results:	

The above sample tested as received, and results are as follows:

S. NO	PARAMETERS	METHOD	UNITS	RESULTS
1	pH @ 25°C	IS 3025 (Part 11)-1983 (RA.2017)	-	6.6
2	Colour	IS : 3025 (Part 4)- 2021	HU	100
3	Total Dissolved Solids	IS 3025 (Part 16)-1984 (RA.2017)	mg/l	3620
4	Total Suspended Solids	IS 3025 (Part 17) -1984 (RA.2021)	mg/l	895
5	Biochemical Oxygen Demand (BOD) 3 days at 27°C	IS 3025 (Part 44) -1993 (RA.2019)	mg/l	646
6	Chemical Oxygen Demand (COD)	IS 3025 (Part 58)-2006 (RA:2017)	mg/l	1640
7	Chloride as Cl	IS 3025 (Part 32)-1988 (RA.2019)	mg/l	938
8	Sulphate as SO ₄	IS 3025 (Part 24/sec -1) - 2022	mg/l	546
9	Oil & Grease	IS 3025 (Part 39) - 2021	mg/l	< 2
10	Ammonical Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	12
11	Total Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	36
12	Total Kjeldahl Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	27
13	Phenolic Compounds as C ₆ H ₅ OH	IS 3025 (Part 43/sec 1) 2022	mg/l	BDL(DL:0.001)
14	Percent Sodium	CTL/SOP/WATER/60-2022	%	66.80
15	Sulphide as S	IS 3025 (Part 29)-1986 (RA.2019)	mg/l	7.2

BDL - Below Detection Limit; DL - Detection limit;

END OF REPORT

Coch

Verified by

For Chennai Testing Laboratory Pvt ltd

A·Rejunny

Authorised Signatory

A. RAJKUMAR Head - Water & Sol Division (CHEMICAL)

Page 1 of 1

The Watter District to want to every commercial for the pay metallist perform.

The depart is beaut privile out of the addresses is attende with the east losing

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	CTL/CH/N-38347/2023-24 & 03.04.2024				
Sample Number	N-38347/23-24				
Name of the Customer M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],					
Address	Kagithapuram - 639 136,				
	Karur District, Tamil Nadu.				
Sample Drawn by	Laboratory				
Sample Name	Effluent Water				
Sample Description	Effluent Water				
Sampling Location	Inlet to ASL				
GPS Reading	11°03'9.941''N & 77°59'54.337''E				
Sample Drawn on	26.03.2024				
Sample Received on	29.03.2024				
Sampling Plan & Procedure	Grab Sample & CTL/QSP/09				
Sample Quantity	2 Litres				
Sample Condition	Good & Received in Plastic Container				
Environmental Conditions	Temperature- 32.1°C and Humidity- 57.0%				
Equipment used for Sampling	NA				
Analysis Started on	29.03.2024				
Analysis Completed on 03.04.2024					
Test Results:					
The above sample tested as received, and results are as follows:					
S. NO PARAMETERS	METHOD	UNITS	RESULTS		

S. NO	PARAMETERS	METHOD	UNITS	RESULTS
1	pH @ 25°C	IS 3025 (Part 11)-1983 (RA.2017)	-	7.3
2	Colour	IS : 3025 (Part 4)- 2021	HU	100
3	Total Dissolved Solids	IS 3025 (Part 16)-1984 (RA.2017)	mg/l	2940
4	Total Suspended Solids	IS 3025 (Part 17) -1984 (RA.2021)	mg/l	372
5	Biochemical Oxygen Demand (BOD) 3 days at 27°C	IS 3025 (Part 44) -1993 (RA.2019)	mg/l	178
6	Chemical Oxygen Demand (COD)	IS 3025 (Part 58)-2006 (RA:2017)	mg/l	636
7	Chloride as Cl	IS 3025 (Part 32)-1988 (RA.2019)	mg/l	627
8	Sulphate as SO ₄	IS 3025 (Part 24/sec -1) - 2022	mg/l	412
9	Oil & Grease	IS 3025 (Part 39) - 2021	mg/l	< 2
10	Ammonical Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	5.9
11	Total Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	20.6
12	Total Kjeldahl Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	11.8
13	Phenolic Compounds as C ₆ H ₅ OH	IS 3025 (Part 43/sec 1) 2022	mg/l	BDL(DL:0.001)
14	Percent Sodium	CTL/SOP/WATER/60-2022	%	56.85
15	Sulphide as S	IS 3025 (Part 29)-1986 (RA.2019)	mg/l	4.5

BDL - Below Detection Limit; DL - Detection limit;

END OF REPORT

Code

Verified by

For Chennai Testing Laboratory Pvt ltd

A. Rejunny

Authorised Signatory

A. RAJKUMAR Head - Water & Soft Division (CHEMICAL)

Page 1 of 1

The Branest shall not be used to occupy, whittee which he gay metamod persons.

The Agent & Sound arty for early and if the addresses is assessed in the cash business

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	CTL/CH/N-38348/2023-24 & 03.04.2024
Sample Number	N-38348/23-24
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],
Address	Kagithapuram - 639 136,
	Karur District, Tamil Nadu.
Sample Drawn by	Laboratory
Sample Name	Effluent Water
Sample Description	Seepage Water
Sampling Location	Seepage Canal
GPS Reading	11°03'17.578''N & 78°00'15.442''E
Sample Drawn on	26.03.2024
Sample Received on	29.03.2024
Sampling Plan & Procedure	Grab Sample & CTL/QSP/09
Sample Quantity	2 Litres
Sample Condition	Good & Received in Plastic Container
Environmental Conditions	Temperature- 32.1°C and Humidity- 57.0%
Equipment used for Sampling	NA
Analysis Started on	29.03.2024
Analysis Completed on	03.04.2024
Test Results:	

The above sample tested as received, and results are as follows:

S. NO	PARAMETERS	METHOD	UNITS	RESULTS
1	рН @ 25°С	IS 3025 (Part 11)-1983 (RA.2017)	-	8.0
2	Colour	IS : 3025 (Part 4)- 2021	HU	10
3	Total Dissolved Solids	IS 3025 (Part 16)-1984 (RA.2017)	mg/l	3050
4	Total Suspended Solids	IS 3025 (Part 17) -1984 (RA.2021)	mg/l	25
5	Biochemical Oxygen Demand (BOD) 3 days at 27°C	IS 3025 (Part 44) -1993 (RA.2019)	mg/l	4
6	Chemical Oxygen Demand (COD)	IS 3025 (Part 58)-2006 (RA:2017)	mg/l	20
7	Chloride as Cl	IS 3025 (Part 32)-1988 (RA.2019)	mg/l	738
8	Sulphate as SO ₄	IS 3025 (Part 24/sec -1) - 2022	mg/l	466
9	Oil & Grease	IS 3025 (Part 39) - 2021	mg/l	< 2
10	Ammonical Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	1.2
11	Total Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	5.6
12	Total Kjeldahl Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	3.4
13	Phenolic Compounds as C ₆ H ₅ OH	IS 3025 (Part 43/sec 1) 2022	mg/l	BDL(DL:0.001)
14	Percent Sodium	CTL/SOP/WATER/60-2022	%	59.85
15	Sulphide as S	IS 3025 (Part 29)-1986 (RA.2019)	mg/l	BDL(DL:0.01)

BDL - Below Detection Limit; DL - Detection limit;

Cee

Verified by

END OF REPORT

For Chennai Testing Laboratory Pvt ltd

A-Dajumm

Authorised Signatory

A. RAJKUMAR Head - Water & Soit Divinim (CHEMICAL)

Page 1 of 1

The Report Disk net be used to except, white each be store metamore persons.

The Agent & Health of L for with out of the addresses is attended in the set builders.

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	CTL/CH/N-38349/2023-24 & 03.04.2024
Sample Number	N-38349/23-24
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],
Address	Kagithapuram - 639 136,
	Karur District, Tamil Nadu.
Sample Drawn by	Laboratory
Sample Name	Effluent Water
Sample Description	Treated Effluent Water
Sampling Location	Secondary Clarifier Outlet
GPS Reading	11°03'9.805''N & 77°59'59.05''E
Sample Drawn on	26.03.2024
Sample Received on	29.03.2024
Sampling Plan & Procedure	Grab Sample & CTL/QSP/09
Sample Quantity	2 Litres
Sample Condition	Good & Received in Plastic Container
Environmental Conditions	Temperature- 32.1°C and Humidity- 57.0%
Equipment used for Sampling	NA
Analysis Started on	29.03.2024
Analysis Completed on	03.04.2024
To at Do avaltar	

<u>Test Results:</u>

The above sample tested as received, and results are as follows:

S. NO	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS*
1	pH @ 25°C	IS 3025 (Part 11)-1983 (RA.2017)	-	8.1	5.5 to 9.0
2	Colour	IS : 3025 (Part 4)- 2021	HU	50	-
3	Total Dissolved Solids	IS 3025 (Part 16)-1984 (RA.2017)	mg/l	2040	Max.2100
4	Total Suspended Solids	IS 3025 (Part 17) -1984 (RA.2021)	mg/l	37	Max.100
5	Biochemical Oxygen Demand (BOD) 3 days at 27°C	IS 3025 (Part 44) -1993 (RA.2019)	mg/l	17	Max.30
6	Chemical Oxygen Demand (COD)	IS 3025 (Part 58)-2006 (RA:2017)	mg/l	148	Max.250
7	Chloride as Cl	IS 3025 (Part 32)-1988 (RA.2019)	mg/l	669	Max.1000
8	Sulphate as SO ₄	IS 3025 (Part 24/sec -1) - 2022	mg/l	398	Max.1000
9	Oil & Grease	IS 3025 (Part 39) - 2021	mg/l	< 2	Max.10
10	Ammonical Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	2.1	Max.50
11	Total Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	9.4	-
12	Total Kjeldahl Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	5.3	Max.100
13	Phenolic Compounds as C ₆ H ₅ OH	IS 3025 (Part 43/sec 1) 2022	mg/l	BDL(DL:0.001)	-
14	Percent Sodium	CTL/SOP/WATER/60-2022	%	35.29	-
15	Sulphide as S	IS 3025 (Part 29)-1986 (RA.2019)	mg/l	BDL(DL:0.01)	Max.2.0

Ceel

Verified by

For Chennai Testing Laboratory Pvt ltd

A. Rajumy

Authorised Signatory

A. RAJKUMAR Head - Water & Solt Division (CHEMICAL)

Page 1 of 2

The Agent & Second prints and the off the addressed is a toront with the case between

CIN: U93000TN2000PTC043869

TEST REPORT

CTL/CH/N-38349/2023-24 & 03.04.2024

S. NO	PARAMETERS METHOD		UNITS	RESULTS	LIMITS*
16	Total Organic Carbon (TOC)	5310-C-APHA 23rd Ed.2017	mg/l	55.63	-
17	AOX	EPA 1653,5021&8260	mg/l	4.5	-

BDL - Below Detection Limit; DL - Detection limit; Max. - Maximum.

*Limits as per TNPCB Norms for Trade Effluent

END OF REPORT

Coe

Test Report No & Date

Verified by

For Chennai Testing Laboratory Pvt ltd

A. Dajumy

Authorised Signatory

A. RAJKUMAR Head - Water & Sol Division (CHEMIGAL)

Page 2 of 2

The figure profession is a set to except which a difference of the star destinant performation figures it results performer to a set on the set former in the set of the set of the set of the set.

ANNEXURE IV

ONLINE – WATER QUALITY WATCH MONITORING DATA

TNPL			TAMILNADU NEWSPRIN	IT AND PAPERS LIMITE		
ONLINE WATER QUALITY WATCH MONITORING DATA						
Date	ETP_1_OUTLET-BOD (mg/l)	ETP_1_OUTLET-COD (mg/l)	ETP_1_OUTLET-TSS (mg/l)	ETP_1_OUTLET-pH		
		Oct-23		I		
01-10-2023	4.68	41.81	13.14	8.27		
02-10-2023	4.34	38.64	19.55	8.24		
03-10-2023	4.51	40.27	19.88	8.27		
04-10-2023	5.22	46.7	20.43	8.25		
05-10-2023	4.38	39.05	17.12	8.23		
06-10-2023	3.49	30.85	18.06	8.09		
07-10-2023	5.01	44.75	24.63	8.15		
08-10-2023	5.16	46.26	24.34	8.23		
09-10-2023	4.77	42.66	23.72	8.13		
10-10-2023	3.65	32.34	19.75	8.07		
11-10-2023	3.46	30.55	14.5	8.13		
12-10-2023	4.66	41.61	21.15	8.22		
13-10-2023	4.77	42.69	18.51	8.18		
14-10-2023	4.69	41.87	20.1	8.18		
15-10-2023	4.05	36.06	11.38	8.16		
16-10-2023	4.84	43.22	19.69	8.2		
17-10-2023	4.33	38.69	29.22	8.02		
18-10-2023	3.76	33.31	20.33	8.03		
19-10-2023	4.51	40.15	16.17	8.14		
20-10-2023	4.8	42.94	18.66	8.21		
21-10-2023	4.7	41.97	11.77	8.24		
22-10-2023	5.38	48.25	15.41	8.28		
23-10-2023	5.13	45.86	17.49	8.26		
24-10-2023	5.94	53.33	19.76	8.31		
25-10-2023	5.17	46.24	12.21	8.31		
26-10-2023	4.6	41.01	10.03	8.32		
27-10-2023	3.95	35.01	16.73	8.23		
28-10-2023	4.73	42.29	20.04	8.25		
29-10-2023	5.89	52.95	19.92	8.28		
30-10-2023	6.91	62.44	20.18	8.32		
31-10-2023	4.77	42.62	13.2	8.22		
MINIMUM	3.46	30.55	10.03	8.02		
MAXIMUM	6.91	62.44	29.22	8.32		
AVERAGE	146.25	1306.39	567.07	254.42		

TNPL			TAMILNADU NEWSPRIN	IT AND PAPERS LIMI		
ONLINE WATER QUALITY WATCH MONITORING DATA						
Date	ETP_1_OUTLET-BOD (mg/l)	ETP_1_OUTLET-COD (mg/l)	ETP_1_OUTLET-TSS (mg/l)	ETP_1_OUTLET-pH		
		Nov-23	I	I		
01-11-2023	5.08	45.4	21.6	8.21		
02-11-2023	6.06	54.4	16.63	8.26		
03-11-2023	7.37	66.63	20.12	8.29		
04-11-2023	6.38	57.44	15.21	8.33		
05-11-2023	5.75	51.7	12.63	7.99		
06-11-2023	4.82	42.99	14.64	8.13		
07-11-2023	6.06	54.63	16.53	8.29		
08-11-2023	6.48	58.32	13.12	8.27		
09-11-2023	6.33	57.02	16.4	8.23		
10-11-2023	7.18	64.76	24.43	8.28		
11-11-2023	7.46	67.46	27.07	8.33		
12-11-2023	8.05	72.84	18.63	8.35		
13-11-2023	8.9	80.79	19.7	8.38		
14-11-2023	7.08	63.99	17.53	8.23		
15-11-2023	7.02	63.4	20.33	7.91		
16-11-2023	7.1	64.21	21.84	8.07		
17-11-2023	5.28	47.27	14.4	8.11		
18-11-2023	8.26	74.73	18.9	8.25		
19-11-2023	9.04	82.11	16.94	7.85		
20-11-2023	7.83	70.84	18.07	8.05		
21-11-2023	9.33	84.79	19.29	8.15		
22-11-2023	6.66	59.92	15.33	8.05		
23-11-2023	7.43	67.11	16.04	8.26		
24-11-2023	8.33	75.38	19.41	8.34		
25-11-2023	7.47	67.59	17.03	8.21		
26-11-2023	6.45	58.06	15.14	8.27		
27-11-2023	7.2	65.08	17.6	7.88		
28-11-2023	7.89	71.15	19.73	7.94		
29-11-2023	11.06	100.59	18.65	8.25		
30-11-2023	12.21	111.24	20.16	8.24		
MINIMUM	4.82	42.99	12.63	7.85		
MAXIMUM	12.21	111.24	27.07	8.38		
AVERAGE	7.39	66.73	18.10	8.18		

TAMILNADU NEWSPRINT AND PAPERS LIMITE						
ONLINE WATER QUALITY WATCH MONITORING DATA						
Date	ETP_1_OUTLET-BOD (mg/l)	ETP_1_OUTLET-COD (mg/l)	ETP_1_OUTLET-TSS (mg/l)	ETP_1_OUTLET-pH		
		Dec-23	1			
01-12-2023	11.48	104.46	19.3	8.23		
02-12-2023	10.73	97.55	17.97	8.24		
03-12-2023	10.85	98.75	20.92	8.2		
04-12-2023	9.03	81.92	22.5	8.2		
05-12-2023	8.56	77.69	23.72	8.2		
06-12-2023	10.37	94.14	22.4	8.16		
07-12-2023	11.19	101.88	15.07	8.17		
08-12-2023	11.62	105.79	21.76	8.16		
09-12-2023	12.27	111.76	16.76	8.17		
10-12-2023	11.12	101.28	14.18	8.18		
11-12-2023	11.46	104.27	14.11	8.19		
12-12-2023	11.35	103.37	14.55	8.19		
13-12-2023	10.19	92.64	12.98	8.18		
14-12-2023	10.28	93.53	13.57	8.16		
15-12-2023	11.36	103.41	14.92	8.17		
16-12-2023	10.66	96.97	14.32	8.15		
17-12-2023	10.47	95.26	14.47	8.15		
18-12-2023	10.6	96.54	14.76	8.2		
19-12-2023	11.33	103.19	18.71	8.21		
20-12-2023	10.09	91.83	13.83	8.22		
21-12-2023	10.58	96.24	14	8.19		
22-12-2023	10.17	92.51	15.27	8.17		
23-12-2023	11.37	103.53	19.42	8.14		
24-12-2023	12.1	110.31	21.47	8.13		
25-12-2023	10.52	95.65	17.32	8.13		
26-12-2023	12.03	109.58	20.1	8.11		
27-12-2023	11.01	100.21	19.83	8.07		
28-12-2023	11.68	106.3	19.15	8.09		
29-12-2023	11.13	101.22	18.42	8.07		
30-12-2023	10.47	95.15	17.23	8.05		
31-12-2023	10.19	92.58	18.08	8.04		
MINIMUM	8.56	77.69	12.98	8.04		
MAXIMUM	12.27	111.76	23.72	8.24		
AVERAGE	10.85	98.69	17.45	8.16		

TAMILNADU NEWSPRINT AND PAPERS LIMITED						
ONLINE WATER QUALITY WATCH MONITORING DATA						
Date	ETP_1_OUTLET-BOD (mg/l)	ETP_1_OUTLET-COD (mg/l)	ETP_1_OUTLET-TSS (mg/l)	ETP_1_OUTLET-pH		
		Jan-24	1			
01-01-2024	11.71	106.7	21.82	8.03		
02-01-2024	9.57	86.86	16.25	8.04		
03-01-2024	10.41	94.58	17.93	8.05		
04-01-2024	10.3	93.64	17.22	8.06		
05-01-2024	10.45	95	15.72	8.05		
06-01-2024	9.5	86.31	14.26	8.1		
07-01-2024	9.28	84.2	17.44	8.09		
08-01-2024	8.36	75.67	22.62	7.83		
09-01-2024	10.1	91.76	20.28	8.08		
10-01-2024	10.81	98.27	24.65	8.07		
11-01-2024	10.06	91.47	17.71	8.08		
12-01-2024	10.06	91.3	17.97	8.12		
13-01-2024	10.06	91.45	16.82	8.15		
14-01-2024	8.96	81.44	14.74	8.15		
15-01-2024	5.76	51.74	11.31	8.18		
16-01-2024	5.27	47.2	8.7	8.09		
17-01-2024	6.4	57.53	15.8	8.1		
18-01-2024	7.82	70.9	20.82	8.09		
19-01-2024	5.42	48.63	17.36	8.07		
20-01-2024	10.91	99.04	27.56	8.14		
21-01-2024	6.44	58.18	21.79	7.72		
22-01-2024	7.64	69.13	26.61	8.07		
23-01-2024	5.33	48.37	24.16	7.91		
24-01-2024	6.07	54.59	26.99	7.77		
25-01-2024	7.21	65.17	26.83	7.96		
26-01-2024	7.33	66.34	22.61	7.91		
27-01-2024	8.01	72.6	23.48	7.97		
28-01-2024	8.8	79.86	22.13	8.11		
29-01-2024	8.56	77.78	17.13	7.85		
30-01-2024	8.53	77.33	15.33	8.01		
31-01-2024	8.19	74.26	17.61	8.15		
MINIMUM	5.27	47.20	8.70	7.72		
MAXIMUM	11.71	106.70	27.56	8.18		
AVERAGE	8.49	77.01	19.41	8.03		

TNPL			TAMILNADU NEWSPRIN	IT AND PAPERS LIMIT		
ONLINE WATER QUALITY WATCH MONITORING DATA						
Date	ETP_1_OUTLET-BOD (mg/l)	ETP_1_OUTLET-COD (mg/l)	ETP_1_OUTLET-TSS (mg/l)	ETP_1_OUTLET-pH		
		Feb-24				
01-02-2024	10.52	95.62	17.84	7.82		
02-02-2024	12.3	112.19	16.14	7.55		
03-02-2024	10.55	96.04	17.59	7.45		
04-02-2024	7.19	65.18	19.13	7.63		
05-02-2024	6.18	55.65	18.29	8.08		
06-02-2024	7.04	63.64	20.15	8.05		
07-02-2024	8.28	75.11	20.93	8.01		
08-02-2024	11.05	100.44	25.94	8.08		
09-02-2024	12.41	113.19	21.66	8.06		
10-02-2024	12.74	112.88	22.42	8.07		
11-02-2024	11.23	102.4	20.3	8.08		
12-02-2024	10.07	91.55	19.28	8.03		
13-02-2024	10.99	100.18	22.17	8.05		
14-02-2024	9.53	86.74	21.07	8.06		
15-02-2024	10.59	96.5	21.93	8.07		
16-02-2024	10.4	94.57	25.19	8.06		
17-02-2024	11.3	99.55	22.45	8.07		
18-02-2024	10.06	91.59	19.43	8.05		
19-02-2024	11.79	107.4	24.63	8.05		
20-02-2024	11.89	108.36	26.22	8.05		
21-02-2024	11.45	104.37	24.66	8.01		
22-02-2024	11.76	107.26	28.78	8		
23-02-2024	11.38	103.76	34.18	7.98		
24-02-2024	11.51	104.98	34.48	8		
25-02-2024	10.75	97.97	19.96	8.02		
26-02-2024	9.88	89.86	18.5	8		
27-02-2024	10.7	97.54	20.1	8.01		
28-02-2024	9.6	87.49	18.23	8.07		
29-02-2024	8.37	75.91	13.81	8.13		
MINIMUM	6.18	55.65	13.81	7.45		
MAXIMUM	12.74	113.19	34.48	8.13		
AVERAGE	10.40	94.41	21.91	7.99		

TNPL			TAMILNADU NEWSPRIN	IT AND PAPERS LIMIT		
ONLINE WATER QUALITY WATCH MONITORING DATA						
Date	ETP_1_OUTLET-BOD (mg/l)	ETP_1_OUTLET-COD (mg/l)	ETP_1_OUTLET-TSS (mg/l)	ETP_1_OUTLET-pH		
		Mar-24				
01-03-2024	7.56	68.67	11.61	8.1		
02-03-2024	6.39	57.74	9.65	8.13		
03-03-2024	6.76	61.14	10.52	8.14		
04-03-2024	8.49	77	12.72	8.1		
05-03-2024	10.48	95.39	16.73	8.13		
06-03-2024	10.74	97.88	17.88	8.12		
07-03-2024	10.54	95.96	16.65	8.12		
08-03-2024	11.39	103.97	18.4	8.1		
09-03-2024	8.82	80.18	13.62	8.15		
10-03-2024	7.92	71.81	14.36	8.14		
11-03-2024	8.37	75.99	13.01	8.12		
12-03-2024	10.26	93.32	20.62	8.15		
13-03-2024	10.33	93.97	23.25	8.15		
14-03-2024	8.72	79.33	22.76	8.14		
15-03-2024	7.55	68.34	15.46	8.15		
16-03-2024	9.2	83.68	19.22	8.11		
17-03-2024	11.99	109.39	28.21	8.11		
18-03-2024	10.95	99.62	24.66	8.11		
19-03-2024	8.22	74.8	19.98	8.12		
20-03-2024	8.38	76.08	21.7	8.13		
21-03-2024	8.8	79.73	20.65	8.13		
22-03-2024	8.36	75.82	19.9	8.14		
23-03-2024	7.88	71.69	18.31	8.15		
24-03-2024	7.03	63.41	14.26	8.18		
25-03-2024	8.89	80.81	18.47	8.18		
26-03-2024	8.46	76.82	16.67	8.18		
27-03-2024	8.56	77.65	16.2	8.21		
28-03-2024	6.71	60.62	13.65	8.21		
29-03-2024	10.11	91.89	21.48	8.2		
30-03-2024	8.48	76.95	14.42	8.2		
31-03-2024	8.25	74.93	14.77	8.18		
MINIMUM	6.39	57.74	9.65	8.10		
MAXIMUM	11.99	109.39	28.21	8.21		
AVERAGE	8.86	80.47	17.41	8.14		

ANNEXURE V

TNPCB - GROUND WATER ANALYSIS REPORT

Report No. DEL/DGL/722

Tamil Nadu Pollution Control Board DISTRICT ENVIRONMENTAL LABORATORY, DINDIGUL-624 004.

REPORT OF ANALYSIS

2. Date and time o 3. Date and time o	f Receipt at Laborat als, Fastening and C	 The District Environmental Engineer, Tamil Nadu Pollution Control Board, Karur - 1. 29.12.2023 at 1.05PM - 01.45PM. 29.12.2023 at 4.45PM Container : Sealed and Fastened Condition in Polythene Carbuoy of 2.5 Lit x 09 Nos. Nine Nos. of Open Well Water Samples. 	
DEE	Lab	and a spear went water samples.	
Code No.	Code No.	Point of Collection	T/UT/PT/NM
230/AEE/KAR	1727	Palamapuram Bhagavathi Amman temple irrigation open well	A LITE HOLE AND
231/AEE/KAR	1728	Periyasamy open well	******
232/AEE/KAR	1729	Ponnusamy Irrigation open well	******
233/AEE/KAR	1730	Pandipalayam Hand pump	
34/AEE/KAR	1731	Pandipalayam Open well	******
35/AEE/KAR	1732	Moolimangalam Pandipalayam Road (Rasappan Open Well)	
36/AEE/KAR	1733	E.Palanisamy Open Well	
37/AEE/KAR	1734	Thangavelu Open Well	
38/AEE/KAR	1735	Periyasamy open well Sakthi pallam	
		and a set of the set o	

0 02/2024 div **Environmental Scientist**

Deputy Chief Scientific Officer, DEL, TNPC Board, Dindigul. -----Page 2 of 3-----

SI. No	Parameters	LAB Code	1727	1728	1729	1730	1731	1732	1733	1734	1735
1.	-11	DEE Code	230/AEE/ KAR	231/AEE/ KAR	232/AEE/ KAR	233/AEE/ KAR	234/AEE/ KAR	235/AEE/ KAR	236/AEE/ KAR	237/AEE/	238/AEE/
1.	pH		7.10	7,35	7.03	7.79	7.36	7.53	7.48	7.51	KAR
2.	Total Suspended Solid:	s (mg/l)	08	08	10	08	06	08			6.83
3.	Total Dissolved Solids	at 180° C (mg/l)	2908	3008					04	06	06
4.		1	100000	3000	3636	2512	2876	2436	2062	2040	4372
-	Chloride (as Cl)	(mg/l)	1260	1415	1500	950	1100	985	720	655	1896
5.	Sulphate (as SO ₄)	(mg/l)	113	237	316	203	303	229	436	380	208
6.	BOD 3 days at 27° C	(mg/l)	03	03	04	03	03	03	<2.0	04	
7.	Chemical Oxygen Dem	and (mg/l)	24	16	32	24	in the second				03
8.	Fluoride (as F)	and the second s				24	32	32	16	32	16
1.1	Distant and the second second second	(mg/l)	1.13	LH	1.04	<1.0	<1.0	<1.0	1.01	1.06	<1.0
9.	Alkalinity (as CaCO ₂)	(mg/l)	180	164	196	120	180	120	136	148	
0.	Total Hardness	(mg/l)	1370	1310	1600	990					186
11.	Calcium (as Ca)	St 1075 - 10	1/650	a state to a state			1070	1050	830	830	1400
222		(mg/l)	501	397	537	244	301	305	208	212	372
2.	Magnesium (as Mg)	(mg/l)	126	151	143	92	78	76	75	69	114
3.	Percent Sodium	(%)	26	31	30	33	26	25	28		1288
14.	IronTotal(asFe)	(mg/l)	0.054	0.065	0.097					28	29
	10000000000000000000000000000000000000	100 B 10		10.000	0.097	0.053	0.071	0.045	0.031	0.062	0.066

End of the Report

Environmetal Scientist

Deputy Chief Scientific Officer, DEL, TNPC Board, Dindigul.

------Page 3 of 3------

LATEST NABL ACCREDITED & MoEF&CC RECOGNIZED THIRD PARTY LAB – GROUND WATER ANALYSIS TEST REPORT

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	CTL/CH/N-38336/2023-24 & 03.04.2024
Sample Number	N-38336/23-24
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],
Address	Kagithapuram - 639 136,
	Karur District, Tamil Nadu.
Sample Drawn by	Laboratory
Sample Name	Ground Water
Sample Description	Ground Water
Sampling Location	Palamapuram Bhagavathi Amman Temple Irrigation Open Well
GPS Reading	11°01'11.259''N & 78°00'42.063''E
Sample Drawn on	26.03.2024
Sample Received on	29.03.2024
Sampling Plan & Procedure	Grab Sample & CTL/QSP/09
Sample Quantity	2 Litres
Sample Condition	Good & Received in Plastic Container
Environmental Conditions	Temperature- 32.1°C and Humidity- 57.0%
Equipment used for Sampling	NA
Analysis Started on	29.03.2024
Analysis Completed on	03.04.2024

Test Results:

The above sample tested as received, and results are as follows:

S. NO	PARAMETERS	METHOD	UNITS	RESULTS
1	Colour	IS : 3025 (Part 4)- 2021	ни	2
2	Odour	IS : 3025 (Part 5) - 2018	-	Agreeable
3	рН @ 25°С	IS 3025 (Part 11)-1983 (RA.2017)	-	8.1
4	Taste	IS 3025 (Part 8)-1984 (R.2017)	-	Disagreeable
5	Turbidity	IS 3025 (Part 10)-1984 (R.2017)	NTU	2
6	Total Dissolved Solids	IS 3025 (Part 16)-1984 (RA.2017)	mg/l	3390
7	Calcium as Ca	IS 3025 (Part 40)-1991 (R.2019)	mg/l	130
8	Chloride as Cl ⁻	IS 3025 (Part 32)-1988 (R.2019)	mg/l	1133
9	Fluoride as F	IS 3025 (Part 60)-2008 (R.2019)	mg/l	0.31
10	Iron as Fe	IS 3025 (Part 53)-2003 (R.2019)	mg/l	0.29
11	Magnesium as Mg	IS 3025 (Part 46)-1994 (R.2019)	mg/l	108
12	Phenolic Compounds as C ₆ H ₅ OH	IS 3025 (Part 43/Sec 1) 2022	mg/l	BDL(DL:0.001)
13	Sulphate as SO4	IS 3025 (Part 24/Sec -1) - 2022	mg/l	660
14	Total Alkalinity as CaCO ₃	IS 3025 (Part 23)-1986 (R.2019)	mg/l	447
15	Total Hardness as CaCO ₃	IS 3025 (Part 21)-2009 (R.2019)	mg/l	768
16	Cyanide as CN	IS 3025 (Part 27/Sec-1) - 2021	mg/l	BDL(DL:0.01)
17	Total Suspended Solids	IS 3025 (Part 17) -1984 (RA.2021)	mg/l	3
18	Chromium as Cr	IS 3025 (Part 52)-2003 (RA.2019)	mg/l	BDL(DL:0.01)
19	Mercury as Hg	IS 3025 (Part 48)-1994 (RA.2019)	mg/l	BDL(DL:0.001)
20	Arsenic as As	IS 3025 (Part 37)-1988(RA.2019)	mg/l	BDL(DL:0.001)

Contfan Verified by

For Chennai Testing Laboratory Pvt ltd

A · K2cj where Authorised Signatory A. RAJKUMAR Head · Water & Soli Division (CHEMICAL)

Page 1 of 2

The Baser and that he was in enough, white end he me malance propose.

The Agent & board will be acho as all the addresses in antenna with the east board

www.ctllabs.in

TEST REPORT

Test Report No & Date CTL/CH/N-38336/2023-24 & 03.04.2024

S. NO	PARAMETERS	METHOD	UNITS	RESULTS
18	Biochemical Oxygen Demand (BOD) 3 days at 27°C	IS 3025 (Part 44) -1993 (RA.2019)	mg/l	< 2
19	Chemical Oxygen Demand (COD)	IS 3025 (Part 58)-2006 (RA:2017)	mg/l	< 4
20	Nitrate Nitrogen as N	IS 3025 (Part 34)-1988 (R.2019)	mg/l	7.5
21	Potassium as K	IS 3025 (Part 45)-1993 (RA.2019)	mg/l	73
22	Dissolved Oxygen	IS 3025 (Part 38) - 1989 (RA.2019)	mg/l	6.9
23	Percent Sodium	CTL/SOP/WATER/60-2022	%	68.66
24	Sodium absorption ratio	IS 11624 – 2019	-	13.62
25	Oil & Grease	IS 3025 (Part 39) - 2021	mg/l	< 2

BDL - Below Detection Limit; DL - Detection limit;

END OF REPORT

Coleigh

Verified by

For Chennai Testing Laboratory Pvt ltd

A. Dajumy

Authorised Signatory A. RAJKUMAR Head - Water & Soil Division (CHEMICAL)

Page 2 of 2

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	CTL/CH/N-38337/2023-24 & 03.04.2024
Sample Number	N-38337/23-24
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],
Address	Kagithapuram - 639 136,
	Karur District, Tamil Nadu.
Sample Drawn by	Laboratory
Sample Name	Ground Water
Sample Description	Ground Water
Sampling Location	Periyasamy Open Well, Sakthipallam
GPS Reading	11°00'54.519''N & 77°59'28.836''E
Sample Drawn on	26.03.2024
Sample Received on	29.03.2024
Sampling Plan & Procedure	Grab Sample & CTL/QSP/09
Sample Quantity	2 Litres
Sample Condition	Good & Received in Plastic Container
Environmental Conditions	Temperature- 32.1°C and Humidity- 57.0%
Equipment used for Sampling	NA
Analysis Started on	29.03.2024
Analysis Completed on	03.04.2024

Test Results:

The above sample tested as received, and results are as follows:

S. NO	PARAMETERS	METHOD	UNITS	RESULTS
1	Colour	IS : 3025 (Part 4)- 2021	HU	2
2	Odour	IS : 3025 (Part 5) - 2018	-	Agreeable
3	pH @ 25°C	IS 3025 (Part 11)-1983 (RA.2017)	-	7.3
4	Taste	IS 3025 (Part 8)-1984 (R.2017)	-	Disagreeable
5	Turbidity	IS 3025 (Part 10)-1984 (R.2017)	NTU	1
6	Total Dissolved Solids	IS 3025 (Part 16)-1984 (RA.2017)	mg/l	4030
7	Calcium as Ca	IS 3025 (Part 40)-1991 (R.2019)	mg/l	381
8	Chloride as Cl ⁻	IS 3025 (Part 32)-1988 (R.2019)	mg/l	1226
9	Fluoride as F	IS 3025 (Part 60)-2008 (R.2019)	mg/l	0.27
10	Iron as Fe	IS 3025 (Part 53)-2003 (R.2019)	mg/l	0.26
11	Magnesium as Mg	IS 3025 (Part 46)-1994 (R.2019)	mg/l	133
12	Phenolic Compounds as C ₆ H ₅ OH	IS 3025 (Part 43/Sec 1) 2022	mg/l	BDL(DL:0.001)
13	Sulphate as SO4	IS 3025 (Part 24/Sec -1) - 2022	mg/l	736
14	Total Alkalinity as CaCO3	IS 3025 (Part 23)-1986 (R.2019)	mg/l	618
15	Total Hardness as CaCO ₃	IS 3025 (Part 21)-2009 (R.2019)	mg/l	1497
16	Cyanide as CN	IS 3025 (Part 27/Sec-1) - 2021	mg/l	BDL(DL:0.01)
17	Total Suspended Solids	IS 3025 (Part 17) -1984 (RA.2021)	mg/l	2
18	Chromium as Cr	IS 3025 (Part 52)-2003 (RA.2019)	mg/l	BDL(DL:0.01)
19	Mercury as Hg	IS 3025 (Part 48)-1994 (RA.2019)	mg/l	BDL(DL:0.001)
20	Arsenic as As	IS 3025 (Part 37)-1988(RA.2019)	mg/l	BDL(DL:0.001)

Cacipto

Verified by

For Chennai Testing Laboratory Pvt ltd

A. Daj min

Authorised Signatory

A. RAJKUMAR Head - Water & Soil Division (CHEMICAL)

Page 1 of 2

The figures and the tax was in comparison with the pay metamor person.

The Agent & recent pright with our of the addresses is a transit with the east desired

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date CTL/CH/N-38337/2023-24 & 03.04.2024

S. NO	PARAMETERS	METHOD	UNITS	RESULTS
18	Biochemical Oxygen Demand (BOD) 3 days at 27°C	IS 3025 (Part 44) -1993 (RA.2019)	mg/l	< 2
19	Chemical Oxygen Demand (COD)	IS 3025 (Part 58)-2006 (RA:2017)	mg/l	< 4
20	Nitrate Nitrogen as N	IS 3025 (Part 34)-1988 (R.2019)	mg/l	9.4
21	Potassium as K	IS 3025 (Part 45)-1993 (RA.2019)	mg/l	70
22	Dissolved Oxygen	IS 3025 (Part 38) - 1989 (RA.2019)	mg/l	7.0
23	Percent Sodium	CTL/SOP/WATER/60-2022	%	55.49
24	Sodium absorption ratio	IS 11624 – 2019	-	10.22
25	Oil & Grease	IS 3025 (Part 39) - 2021	mg/l	< 2

BDL - Below Detection Limit; DL - Detection limit;

00

Verified by

END OF REPORT

For Chennai Testing Laboratory Pvt ltd

A. Dajumy

Authorised Signatory A. RAJKUMAR Head - Water & Soll Division (CHEMICAL)

Page 2 of 2

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	CTL/CH/N-38338/2023-24 & 03.04.2024
Sample Number	N-38338/23-24
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],
Address	Kagithapuram - 639 136,
	Karur District, Tamil Nadu.
Sample Drawn by	Laboratory
Sample Name	Ground Water
Sample Description	Ground Water
Sampling Location	Ponnusamy Irrigation Open Well
GPS Reading	11°00'55.553''N & 77°59'24.75''E
Sample Drawn on	26.03.2024
Sample Received on	29.03.2024
Sampling Plan & Procedure	Grab Sample & CTL/QSP/09
Sample Quantity	2 Litres
Sample Condition	Good & Received in Plastic Container
Environmental Conditions	Temperature- 32.1°C and Humidity- 57.0%
Equipment used for Sampling	NA
Analysis Started on	29.03.2024
Analysis Completed on	03.04.2024

Test Results:

The above sample tested as received, and results are as follows:

S. NO	PARAMETERS	METHOD	UNITS	RESULTS
1	Colour	IS : 3025 (Part 4)- 2021	HU	2
2	Odour	IS : 3025 (Part 5) - 2018	-	Agreeable
3	pH @ 25°C	IS 3025 (Part 11)-1983 (RA.2017)	-	7.9
4	Taste	IS 3025 (Part 8)-1984 (R.2017)	-	Disagreeable
5	Turbidity	IS 3025 (Part 10)-1984 (R.2017)	NTU	< 1
6	Total Dissolved Solids	IS 3025 (Part 16)-1984 (RA.2017)	mg/l	3150
7	Calcium as Ca	IS 3025 (Part 40)-1991 (R.2019)	mg/l	259
8	Chloride as Cl ⁻	IS 3025 (Part 32)-1988 (R.2019)	mg/l	924
9	Fluoride as F	IS 3025 (Part 60)-2008 (R.2019)	mg/l	0.26
10	Iron as Fe	IS 3025 (Part 53)-2003 (R.2019)	mg/l	0.22
11	Magnesium as Mg	IS 3025 (Part 46)-1994 (R.2019)	mg/l	160
12	Phenolic Compounds as C ₆ H ₅ OH	IS 3025 (Part 43/Sec 1) 2022	mg/l	BDL(DL:0.001)
13	Sulphate as SO ₄	IS 3025 (Part 24/Sec -1) - 2022	mg/l	575
14	Total Alkalinity as CaCO ₃	IS 3025 (Part 23)-1986 (R.2019)	mg/l	490
15	Total Hardness as CaCO ₃	IS 3025 (Part 21)-2009 (R.2019)	mg/l	1304
16	Cyanide as CN	IS 3025 (Part 27/Sec-1) - 2021	mg/l	BDL(DL:0.01)
17	Total Suspended Solids	IS 3025 (Part 17) -1984 (RA.2021)	mg/l	< 2
18	Chromium as Cr	IS 3025 (Part 52)-2003 (RA.2019)	mg/l	BDL(DL:0.01)
19	Mercury as Hg	IS 3025 (Part 48)-1994 (RA.2019)	mg/l	BDL(DL:0.001)
20	Arsenic as As	IS 3025 (Part 37)-1988(RA.2019)	mg/l	BDL(DL:0.001)

Califo

Verified by

For Chennai Testing Laboratory Pvt ltd

A. Daj miny

Authorised Signatory A. RAJKUMAR Head Water & Soil Division (CHEMIGAL)

Page 1 of 2

The figures and that he was in surger, where which is my metalous persons.

The Agent & Second and, for and one of the artifecture is an even in \$760 and \$1000 are

www.ctllabs.in

TEST REPORT

Test Report No & Date CTL/CH/N-38338/2023-24 & 03.04.2024

S. NO	PARAMETERS	METHOD	UNITS	RESULTS
18	Biochemical Oxygen Demand (BOD) 3 days at 27°C	IS 3025 (Part 44) -1993 (RA.2019)	mg/l	< 2
19	Chemical Oxygen Demand (COD)	IS 3025 (Part 58)-2006 (RA:2017)	mg/l	< 4
20	Nitrate Nitrogen as N	IS 3025 (Part 34)-1988 (R.2019)	mg/l	5.4
21	Potassium as K	IS 3025 (Part 45)-1993 (RA.2019)	mg/l	47
22	Dissolved Oxygen	IS 3025 (Part 38) - 1989 (RA.2019)	mg/l	7.1
23	Percent Sodium	CTL/SOP/WATER/60-2022	%	53.93
24	Sodium absorption ratio	IS 11624 – 2019	-	8.84
25	Oil & Grease	IS 3025 (Part 39) - 2021	mg/l	< 2

BDL - Below Detection Limit; DL - Detection limit;

END OF REPORT

C

Verified by

For Chennai Testing Laboratory Pvt ltd

A. Dajumy

Authorised Signatory A. RAJKUMAR Head - Water & Soll Division (CHEMICAL)

Page 2 of 2

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	CTL/CH/N-38339/2023-24 & 03.04.2024
Sample Number	N-38339/23-24
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],
Address	Kagithapuram - 639 136,
	Karur District, Tamil Nadu.
Sample Drawn by	Laboratory
Sample Name	Ground Water
Sample Description	Ground Water
Sampling Location	Pandipalayam Hand Pump
GPS Reading	11°01'39.44''N & 77°59'44.61''E
Sample Drawn on	26.03.2024
Sample Received on	29.03.2024
Sampling Plan & Procedure	Grab Sample & CTL/QSP/09
Sample Quantity	2 Litres
Sample Condition	Good & Received in Plastic Container
Environmental Conditions	Temperature- 32.1°C and Humidity- 57.0%
Equipment used for Sampling	NA
Analysis Started on	29.03.2024
Analysis Completed on	03.04.2024

Test Results:

The above sample tested as received, and results are as follows:

S. NO	PARAMETERS	METHOD	UNITS	RESULTS
1	Colour	IS : 3025 (Part 4)- 2021	HU	2
2	Odour	IS : 3025 (Part 5) - 2018	-	Agreeable
3	pH @ 25°C	IS 3025 (Part 11)-1983 (RA.2017)	-	7.8
4	Taste	IS 3025 (Part 8)-1984 (R.2017)	-	Disagreeable
5	Turbidity	IS 3025 (Part 10)-1984 (R.2017)	NTU	2
6	Total Dissolved Solids	IS 3025 (Part 16)-1984 (RA.2017)	mg/l	2920
7	Calcium as Ca	IS 3025 (Part 40)-1991 (R.2019)	mg/l	170
8	Chloride as Cl ⁻	IS 3025 (Part 32)-1988 (R.2019)	mg/l	808
9	Fluoride as F	IS 3025 (Part 60)-2008 (R.2019)	mg/l	0.28
10	Iron as Fe	IS 3025 (Part 53)-2003 (R.2019)	mg/l	0.23
11	Magnesium as Mg	IS 3025 (Part 46)-1994 (R.2019)	mg/l	81
12	Phenolic Compounds as C ₆ H ₅ OH	IS 3025 (Part 43/Sec 1) 2022	mg/l	BDL(DL:0.001)
13	Sulphate as SO ₄	IS 3025 (Part 24/Sec -1) - 2022	mg/l	544
14	Total Alkalinity as CaCO ₃	IS 3025 (Part 23)-1986 (R.2019)	mg/l	692
15	Total Hardness as CaCO ₃	IS 3025 (Part 21)-2009 (R.2019)	mg/l	757
16	Cyanide as CN	IS 3025 (Part 27/Sec-1) - 2021	mg/l	BDL(DL:0.01)
17	Total Suspended Solids	IS 3025 (Part 17) -1984 (RA.2021)	mg/l	3
18	Chromium as Cr	IS 3025 (Part 52)-2003 (RA.2019)	mg/l	BDL(DL:0.01)
19	Mercury as Hg	IS 3025 (Part 48)-1994 (RA.2019)	mg/l	BDL(DL:0.001)
20	Arsenic as As	IS 3025 (Part 37)-1988(RA.2019)	mg/l	BDL(DL:0.001)

For Chennai Testing Laboratory Pvt ltd

A. Dajumy

Authorised Signatory A. RAJKUMAR Head Water & Soil Division (CHEMICAL)

Page 1 of 2

The figures and the tax was in social, minime and for my meliance perpose.

The Agent & result of a fit with out of the additional is attende in the set being a

Coleinto

Verified by

www.ctllabs.in

TEST REPORT

Test Report No & Date CTL/CH/N-38339/2023-24 & 03.04.2024

S. NO	PARAMETERS	METHOD	UNITS	RESULTS
18	Biochemical Oxygen Demand (BOD) 3 days at 27°C	IS 3025 (Part 44) -1993 (RA.2019)	mg/l	< 2
19	Chemical Oxygen Demand (COD)	IS 3025 (Part 58)-2006 (RA:2017)	mg/l	< 4
20	Nitrate Nitrogen as N	IS 3025 (Part 34)-1988 (R.2019)	mg/l	7.6
21	Potassium as K	IS 3025 (Part 45)-1993 (RA.2019)	mg/l	43
22	Dissolved Oxygen	IS 3025 (Part 38) - 1989 (RA.2019)	mg/l	7.0
23	Percent Sodium	CTL/SOP/WATER/60-2022	%	62.80
24	Sodium absorption ratio	IS 11624 – 2019	-	9.96
25	Oil & Grease	IS 3025 (Part 39) - 2021	mg/l	< 2

BDL - Below Detection Limit; DL - Detection limit;

END OF REPORT

C

Verified by

For Chennai Testing Laboratory Pvt ltd

A. Dajumy

Authorised Signatory A. RAJKUMAR Head - Water & Soll Division (CHEMICAL)

Page 2 of 2

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	CTL/CH/N-38340/2023-24 & 03.04.2024
Sample Number	N-38340/23-24
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],
Address	Kagithapuram - 639 136,
	Karur District, Tamil Nadu.
Sample Drawn by	Laboratory
Sample Name	Ground Water
Sample Description	Ground Water
Sampling Location	Rasappan Open Well, Moolimangalam
GPS Reading	11°01'47.588''N & 77°59'44.078''E
Sample Drawn on	26.03.2024
Sample Received on	29.03.2024
Sampling Plan & Procedure	Grab Sample & CTL/QSP/09
Sample Quantity	2 Litres
Sample Condition	Good & Received in Plastic Container
Environmental Conditions	Temperature- 32.1°C and Humidity- 57.0%
Equipment used for Sampling	NA
Analysis Started on	29.03.2024
Analysis Completed on	03.04.2024

Test Results:

The above sample tested as received, and results are as follows:

S. NO	PARAMETERS	METHOD	UNITS	RESULTS
1	Colour	IS : 3025 (Part 4)- 2021	HU	2
2	Odour	IS : 3025 (Part 5) - 2018	-	Agreeable
3	pH @ 25°C	IS 3025 (Part 11)-1983 (RA.2017)	-	7.9
4	Taste	IS 3025 (Part 8)-1984 (R.2017)	-	Disagreeable
5	Turbidity	IS 3025 (Part 10)-1984 (R.2017)	NTU	2
6	Total Dissolved Solids	IS 3025 (Part 16)-1984 (RA.2017)	mg/l	2940
7	Calcium as Ca	IS 3025 (Part 40)-1991 (R.2019)	mg/l	134
8	Chloride as Cl ⁻	IS 3025 (Part 32)-1988 (R.2019)	mg/l	892
9	Fluoride as F	IS 3025 (Part 60)-2008 (R.2019)	mg/l	0.34
10	Iron as Fe	IS 3025 (Part 53)-2003 (R.2019)	mg/l	0.39
11	Magnesium as Mg	IS 3025 (Part 46)-1994 (R.2019)	mg/l	81
12	Phenolic Compounds as C ₆ H ₅ OH	IS 3025 (Part 43/Sec 1) 2022	mg/l	BDL(DL:0.001)
13	Sulphate as SO ₄	IS 3025 (Part 24/Sec -1) - 2022	mg/l	544
14	Total Alkalinity as CaCO3	IS 3025 (Part 23)-1986 (R.2019)	mg/l	596
15	Total Hardness as CaCO ₃	IS 3025 (Part 21)-2009 (R.2019)	mg/l	667
16	Cyanide as CN	IS 3025 (Part 27/Sec-1) - 2021	mg/l	BDL(DL:0.01)
17	Total Suspended Solids	IS 3025 (Part 17) -1984 (RA.2021)	mg/l	4
18	Chromium as Cr	IS 3025 (Part 52)-2003 (RA.2019)	mg/l	BDL(DL:0.01)
19	Mercury as Hg	IS 3025 (Part 48)-1994 (RA.2019)	mg/l	BDL(DL:0.001)
20	Arsenic as As	IS 3025 (Part 37)-1988(RA.2019)	mg/l	BDL(DL:0.001)

Calif

Verified by

For Chennai Testing Laboratory Pvt ltd

A · Daj many

Authorised Signatory A. RAJKUMAR Head - Water & Soil Division (CHEMICAL)

Page 1 of 2

The figures and the tax was in comparison with the pay metamor person.

The Agent & Second pringly with our of the additional is a toronto its flar and desired

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date CTL/CH/N-38340/2023-24 & 03.04.2024

S. NO	PARAMETERS	METHOD	UNITS	RESULTS
18	Biochemical Oxygen Demand (BOD) 3 days at 27°C	IS 3025 (Part 44) -1993 (RA.2019)	mg/l	< 2
19	Chemical Oxygen Demand (COD)	IS 3025 (Part 58)-2006 (RA:2017)	mg/l	< 4
20	Nitrate Nitrogen as N	IS 3025 (Part 34)-1988 (R.2019)	mg/l	5.8
21	Potassium as K	IS 3025 (Part 45)-1993 (RA.2019)	mg/l	52
22	Dissolved Oxygen	IS 3025 (Part 38) - 1989 (RA.2019)	mg/l	6.9
23	Percent Sodium	CTL/SOP/WATER/60-2022	%	66.91
24	Sodium absorption ratio	IS 11624 – 2019	-	11.49
25	Oil & Grease	IS 3025 (Part 39) - 2021	mg/l	< 2

BDL - Below Detection Limit; DL - Detection limit;

Co

Verified by

END OF REPORT

For Chennai Testing Laboratory Pvt ltd

A. Dajumy

Authorised Signatory A. RAJKUMAR Head - Water & Soll Division (CHEMICAL)

Page 2 of 2

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	CTL/CH/N-38341/2023-24 & 03.04.2024
Sample Number	N-38341/23-24
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],
Address	Kagithapuram - 639 136,
	Karur District, Tamil Nadu.
Sample Drawn by	Laboratory
Sample Name	Ground Water
Sample Description	Ground Water
Sampling Location	E.Palanisamy Open Well
GPS Reading	11°00'49.21''N & 78°05'44.31''E
Sample Drawn on	26.03.2024
Sample Received on	29.03.2024
Sampling Plan & Procedure	Grab Sample & CTL/QSP/09
Sample Quantity	2 Litres
Sample Condition	Good & Received in Plastic Container
Environmental Conditions	Temperature- 32.1°C and Humidity- 57.0%
Equipment used for Sampling	NA
Analysis Started on	29.03.2024
Analysis Completed on	03.04.2024

Test Results:

The above sample tested as received, and results are as follows:

S. NO	PARAMETERS	METHOD	UNITS	RESULTS
1	Colour	IS : 3025 (Part 4)- 2021	HU	2
2	Odour	IS : 3025 (Part 5) - 2018	-	Agreeable
3	pH @ 25°C	IS 3025 (Part 11)-1983 (RA.2017)	-	7.7
4	Taste	IS 3025 (Part 8)-1984 (R.2017)	-	Disagreeable
5	Turbidity	IS 3025 (Part 10)-1984 (R.2017)	NTU	1
6	Total Dissolved Solids	IS 3025 (Part 16)-1984 (RA.2017)	mg/l	4850
7	Calcium as Ca	IS 3025 (Part 40)-1991 (R.2019)	mg/l	251
8	Chloride as Cl ⁻	IS 3025 (Part 32)-1988 (R.2019)	mg/l	1728
9	Fluoride as F	IS 3025 (Part 60)-2008 (R.2019)	mg/l	0.35
10	Iron as Fe	IS 3025 (Part 53)-2003 (R.2019)	mg/l	0.27
11	Magnesium as Mg	IS 3025 (Part 46)-1994 (R.2019)	mg/l	147
12	Phenolic Compounds as C ₆ H ₅ OH	IS 3025 (Part 43/Sec 1) 2022	mg/l	BDL(DL:0.001)
13	Sulphate as SO ₄	IS 3025 (Part 24/Sec -1) - 2022	mg/l	927
14	Total Alkalinity as CaCO ₃	IS 3025 (Part 23)-1986 (R.2019)	mg/l	383
15	Total Hardness as CaCO ₃	IS 3025 (Part 21)-2009 (R.2019)	mg/l	1231
16	Cyanide as CN	IS 3025 (Part 27/Sec-1) - 2021	mg/l	BDL(DL:0.01)
17	Total Suspended Solids	IS 3025 (Part 17) -1984 (RA.2021)	mg/l	2
18	Chromium as Cr	IS 3025 (Part 52)-2003 (RA.2019)	mg/l	BDL(DL:0.01)
19	Mercury as Hg	IS 3025 (Part 48)-1994 (RA.2019)	mg/l	BDL(DL:0.001)
20	Arsenic as As	IS 3025 (Part 37)-1988(RA.2019)	mg/l	BDL(DL:0.001)

California Verified by

For Chennai Testing Laboratory Pvt ltd

A . Recjum

Authorised Signatory A. RAJKUMAR Head - Water & Soli Division (CHEMICAL)

Page 1 of 2

The figures and that he want in comparison which a well for more methods persons.

The Agent & recent pright with our of the arbitrary is proved in the methods are

www.ctllabs.in

TEST REPORT

Test Report No & Date CTL/CH/N-38341/2023-24 & 03.04.2024

S. NO	PARAMETERS	METHOD	UNITS	RESULTS
18	Biochemical Oxygen Demand (BOD) 3 days at 27°C	IS 3025 (Part 44) -1993 (RA.2019)	mg/l	< 2
19	Chemical Oxygen Demand (COD)	IS 3025 (Part 58)-2006 (RA:2017)	mg/l	< 4
20	Nitrate Nitrogen as N	IS 3025 (Part 34)-1988 (R.2019)	mg/l	11.5
21	Potassium as K	IS 3025 (Part 45)-1993 (RA.2019)	mg/l	95
22	Dissolved Oxygen	IS 3025 (Part 38) - 1989 (RA.2019)	mg/l	7.1
23	Percent Sodium	CTL/SOP/WATER/60-2022	%	68.26
24	Sodium absorption ratio	IS 11624 – 2019	-	16.57
25	Oil & Grease	IS 3025 (Part 39) - 2021	mg/l	< 2

BDL - Below Detection Limit; DL - Detection limit;

END OF REPORT

C

Verified by

For Chennai Testing Laboratory Pvt ltd

A. Dajumy

Authorised Signatory A. RAJKUMAR Head - Water & Soll Division (CHEMICAL)

Page 2 of 2

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	CTL/CH/N-38342/2023-24 & 03.04.2024
Sample Number	N-38342/23-24
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],
Address	Kagithapuram - 639 136,
	Karur District, Tamil Nadu.
Sample Drawn by	Laboratory
Sample Name	Ground Water
Sample Description	Ground Water
Sampling Location	Pandipalayam Open Well
GPS Reading	11°01'28.085''N & 77°59'45.562''E
Sample Drawn on	26.03.2024
Sample Received on	29.03.2024
Sampling Plan & Procedure	Grab Sample & CTL/QSP/09
Sample Quantity	2 Litres
Sample Condition	Good & Received in Plastic Container
Environmental Conditions	Temperature- 32.1°C and Humidity- 57.0%
Equipment used for Sampling	NA
Analysis Started on	29.03.2024
Analysis Completed on	03.04.2024

Test Results:

The above sample tested as received, and results are as follows:

S. NO	PARAMETERS	METHOD	UNITS	RESULTS
1	Colour	IS : 3025 (Part 4)- 2021	HU	2
2	Odour	IS : 3025 (Part 5) - 2018	-	Agreeable
3	pH @ 25°C	IS 3025 (Part 11)-1983 (RA.2017)	-	7.6
4	Taste	IS 3025 (Part 8)-1984 (R.2017)	-	Disagreeable
5	Turbidity	IS 3025 (Part 10)-1984 (R.2017)	NTU	1
6	Total Dissolved Solids	IS 3025 (Part 16)-1984 (RA.2017)	mg/l	2670
7	Calcium as Ca	IS 3025 (Part 40)-1991 (R.2019)	mg/l	219
8	Chloride as Cl ⁻	IS 3025 (Part 32)-1988 (R.2019)	mg/l	957
9	Fluoride as F	IS 3025 (Part 60)-2008 (R.2019)	mg/l	0.36
10	Iron as Fe	IS 3025 (Part 53)-2003 (R.2019)	mg/l	0.27
11	Magnesium as Mg	IS 3025 (Part 46)-1994 (R.2019)	mg/l	65
12	Phenolic Compounds as C ₆ H ₅ OH	IS 3025 (Part 43/Sec 1) 2022	mg/l	BDL(DL:0.001)
13	Sulphate as SO4	IS 3025 (Part 24/Sec -1) - 2022	mg/l	80
14	Total Alkalinity as CaCO ₃	IS 3025 (Part 23)-1986 (R.2019)	mg/l	596
15	Total Hardness as CaCO ₃	IS 3025 (Part 21)-2009 (R.2019)	mg/l	810
16	Cyanide as CN	IS 3025 (Part 27/Sec-1) - 2021	mg/l	BDL(DL:0.01)
17	Total Suspended Solids	IS 3025 (Part 17) -1984 (RA.2021)	mg/l	2
18	Chromium as Cr	IS 3025 (Part 52)-2003 (RA.2019)	mg/l	BDL(DL:0.01)
19	Mercury as Hg	IS 3025 (Part 48)-1994 (RA.2019)	mg/l	BDL(DL:0.001)
20	Arsenic as As	IS 3025 (Part 37)-1988(RA.2019)	mg/l	BDL(DL:0.001)

Calif

Verified by

For Chennai Testing Laboratory Pvt ltd

A · Dajummy

Authorised Signatory

A. RAJKUMAR Head Water & Soli Division (CHEMICAL)

Page 1 of 2

The figures and the tax and in socials, whittee shall be pre-molitized persons.

The Agent & Sound and for our of the addresses is accordingly for each designer.

www.ctllabs.in

TEST REPORT

Test Report No & Date CTL/CH/N-38342/2023-24 & 03.04.2024

S. NO	PARAMETERS	METHOD	UNITS	RESULTS
18	Biochemical Oxygen Demand (BOD) 3 days at 27°C	IS 3025 (Part 44) -1993 (RA.2019)	mg/l	< 2
19	Chemical Oxygen Demand (COD)	IS 3025 (Part 58)-2006 (RA:2017)	mg/l	< 4
20	Nitrate Nitrogen as N	IS 3025 (Part 34)-1988 (R.2019)	mg/l	9.7
21	Potassium as K	IS 3025 (Part 45)-1993 (RA.2019)	mg/l	54
22	Dissolved Oxygen	IS 3025 (Part 38) - 1989 (RA.2019)	mg/l	6.9
23	Percent Sodium	CTL/SOP/WATER/60-2022	%	64.44
24	Sodium absorption ratio	IS 11624 – 2019	-	11.19
25	Oil & Grease	IS 3025 (Part 39) - 2021	mg/l	< 2

BDL - Below Detection Limit; DL - Detection limit;

END OF REPORT

C

Verified by

For Chennai Testing Laboratory Pvt ltd

A. Dajumy

Authorised Signatory A. RAJKUMAR Head - Water & Soll Division (CHEMICAL)

Page 2 of 2

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	CTL/CH/N-38343/2023-24 & 03.04.2024
Sample Number	N-38343/23-24
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],
Address	Kagithapuram - 639 136,
	Karur District, Tamil Nadu.
Sample Drawn by	Laboratory
Sample Name	Ground Water
Sample Description	Ground Water
Sampling Location	Thangavelu Open Well
GPS Reading	11°00'57.235''N & 77°59'48.272''E
Sample Drawn on	26.03.2024
Sample Received on	29.03.2024
Sampling Plan & Procedure	Grab Sample & CTL/QSP/09
Sample Quantity	2 Litres
Sample Condition	Good & Received in Plastic Container
Environmental Conditions	Temperature- 32.1°C and Humidity- 57.0%
Equipment used for Sampling	NA
Analysis Started on	29.03.2024
Analysis Completed on	03.04.2024

Test Results:

The above sample tested as received, and results are as follows:

S. NO	PARAMETERS	METHOD	UNITS	RESULTS
1	Colour	IS : 3025 (Part 4)- 2021	HU	2
2	Odour	IS : 3025 (Part 5) - 2018	-	Agreeable
3	рН @ 25°С	IS 3025 (Part 11)-1983 (RA.2017)	-	7.7
4	Taste	IS 3025 (Part 8)-1984 (R.2017)	-	Disagreeable
5	Turbidity	IS 3025 (Part 10)-1984 (R.2017)	NTU	4
6	Total Dissolved Solids	IS 3025 (Part 16)-1984 (RA.2017)	mg/l	2680
7	Calcium as Ca	IS 3025 (Part 40)-1991 (R.2019)	mg/l	231
8	Chloride as Cl ⁻	IS 3025 (Part 32)-1988 (R.2019)	mg/l	734
9	Fluoride as F	IS 3025 (Part 60)-2008 (R.2019)	mg/l	0.41
10	Iron as Fe	IS 3025 (Part 53)-2003 (R.2019)	mg/l	0.57
11	Magnesium as Mg	IS 3025 (Part 46)-1994 (R.2019)	mg/l	59
12	Phenolic Compounds as C ₆ H ₅ OH	IS 3025 (Part 43/Sec 1) 2022	mg/l	BDL(DL:0.001)
13	Sulphate as SO ₄	IS 3025 (Part 24/Sec -1) - 2022	mg/l	454
14	Total Alkalinity as CaCO ₃	IS 3025 (Part 23)-1986 (R.2019)	mg/l	671
15	Total Hardness as CaCO ₃	IS 3025 (Part 21)-2009 (R.2019)	mg/l	819
16	Cyanide as CN	IS 3025 (Part 27/Sec-1) - 2021	mg/l	BDL(DL:0.01)
17	Total Suspended Solids	IS 3025 (Part 17) -1984 (RA.2021)	mg/l	7
18	Chromium as Cr	IS 3025 (Part 52)-2003 (RA.2019)	mg/l	BDL(DL:0.01)
19	Mercury as Hg	IS 3025 (Part 48)-1994 (RA.2019)	mg/l	BDL(DL:0.001)
20	Arsenic as As	IS 3025 (Part 37)-1988(RA.2019)	mg/l	BDL(DL:0.001)

Califa

Verified by

For Chennai Testing Laboratory Pvt ltd

A · Day many Authorised Signatory

A. RAJRUMAR Head - Water & Soil Division (OHEMIGAL)

Page 1 of 2

The figures and that he was to except, whittee with he may maturate persons.

The Agent & board only for only one of the addresses in according by the cash board on

www.ctllabs.in

TEST REPORT

Test Report No & Date CTL/CH/N-38343/2023-24 & 03.04.2024

S. NO	PARAMETERS	METHOD	UNITS	RESULTS
18	Biochemical Oxygen Demand (BOD) 3 days at 27°C	IS 3025 (Part 44) -1993 (RA.2019)	mg/l	< 2
19	Chemical Oxygen Demand (COD)	IS 3025 (Part 58)-2006 (RA:2017)	mg/l	< 4
20	Nitrate Nitrogen as N	IS 3025 (Part 34)-1988 (R.2019)	mg/l	3.60
21	Potassium as K	IS 3025 (Part 45)-1993 (RA.2019)	mg/l	40
22	Dissolved Oxygen	IS 3025 (Part 38) - 1989 (RA.2019)	mg/l	6.5
23	Percent Sodium	CTL/SOP/WATER/60-2022	%	58.70
24	Sodium absorption ratio	IS 11624 – 2019	-	8.64
25	Oil & Grease	IS 3025 (Part 39) - 2021	mg/l	< 2

BDL - Below Detection Limit; DL - Detection limit;

END OF REPORT

C

Verified by

For Chennai Testing Laboratory Pvt ltd

A. Dajumy

Authorised Signatory A. RAJKUMAR Head - Water & Soll Division (CHEMICAL)

Page 2 of 2

www.ctllabs.in

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	CTL/CH/N-38344/2023-24 & 03.04.2024
Sample Number	N-38344/23-24
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],
Address	Kagithapuram - 639 136,
	Karur District, Tamil Nadu.
Sample Drawn by	Laboratory
Sample Name	Ground Water
Sample Description	Ground Water
Sampling Location	Periyasamy Open Well, Thathampalayam
GPS Reading	11°01'36.904''N & 78°00'47.622''E
Sample Drawn on	26.03.2024
Sample Received on	29.03.2024
Sampling Plan & Procedure	Grab Sample & CTL/QSP/09
Sample Quantity	2 Litres
Sample Condition	Good & Received in Plastic Container
Environmental Conditions	Temperature- 32.1°C and Humidity- 57.0%
Equipment used for Sampling	NA
Analysis Started on	29.03.2024
Analysis Completed on	03.04.2024

Test Results:

The above sample tested as received, and results are as follows:

S. NO	PARAMETERS	METHOD	UNITS	RESULTS
1	Colour	IS : 3025 (Part 4)- 2021	НՍ	5
2	Odour	IS : 3025 (Part 5) - 2018	-	Agreeable
3	pH @ 25°C	IS 3025 (Part 11)-1983 (RA.2017)	-	7.7
4	Taste	IS 3025 (Part 8)-1984 (R.2017)	-	Disagreeable
5	Turbidity	IS 3025 (Part 10)-1984 (R.2017)	NTU	4
6	Total Dissolved Solids	IS 3025 (Part 16)-1984 (RA.2017)	mg/l	3640
7	Calcium as Ca	IS 3025 (Part 40)-1991 (R.2019)	mg/l	283
8	Chloride as Cl ⁻	IS 3025 (Part 32)-1988 (R.2019)	mg/l	1115
9	Fluoride as F	IS 3025 (Part 60)-2008 (R.2019)	mg/l	0.31
10	Iron as Fe	IS 3025 (Part 53)-2003 (R.2019)	mg/l	0.74
11	Magnesium as Mg	IS 3025 (Part 46)-1994 (R.2019)	mg/l	93
12	Phenolic Compounds as C ₆ H ₅ OH	IS 3025 (Part 43/Sec 1) 2022	mg/l	BDL(DL:0.001)
13	Sulphate as SO ₄	IS 3025 (Part 24/Sec -1) - 2022	mg/l	693
14	Total Alkalinity as CaCO ₃	IS 3025 (Part 23)-1986 (R.2019)	mg/l	554
15	Total Hardness as CaCO ₃	IS 3025 (Part 21)-2009 (R.2019)	mg/l	1088
16	Cyanide as CN	IS 3025 (Part 27/Sec-1) - 2021	mg/l	BDL(DL:0.01)
17	Total Suspended Solids	IS 3025 (Part 17) -1984 (RA.2021)	mg/l	6
18	Chromium as Cr	IS 3025 (Part 52)-2003 (RA.2019)	mg/l	BDL(DL:0.01)
19	Mercury as Hg	IS 3025 (Part 48)-1994 (RA.2019)	mg/l	BDL(DL:0.001)
20	Arsenic as As	IS 3025 (Part 37)-1988(RA.2019)	mg/l	BDL(DL:0.001)

California Verified by

For Chennai Testing Laboratory Pvt ltd

A. Dajumm

Authorised Signatory

A. RAJKUMAR Head - Water & Soil Division (CHEMIGAL)

Page 1 of 2

The figures and the tax was in comparison with the pay metamor person.

The depart is beaut only for only one of the articlement is proved in the east feature

A - Super 19 | T.V.K. Industrial Estate | Guindy | E-mail : chennaltestinglab@gmail.com Chennal - 600 032 | Tamil Nadu | India | Telefax : +91-44-2250 1757

www.ctllabs.in

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date CTL/CH/N-38344/2023-24 & 03.04.2024

S. NO	PARAMETERS	METHOD	UNITS	RESULTS
18	Biochemical Oxygen Demand (BOD) 3 days at 27°C	IS 3025 (Part 44) -1993 (RA.2019)	mg/l	< 2
19	Chemical Oxygen Demand (COD)	IS 3025 (Part 58)-2006 (RA:2017)	mg/l	< 4
20	Nitrate Nitrogen as N	IS 3025 (Part 34)-1988 (R.2019)	mg/l	8.2
21	Potassium as K	IS 3025 (Part 45)-1993 (RA.2019)	mg/l	63
22	Dissolved Oxygen	IS 3025 (Part 38) - 1989 (RA.2019)	mg/l	6.7
23	Percent Sodium	CTL/SOP/WATER/60-2022	%	60.35
24	Sodium absorption ratio	IS 11624 – 2019	-	10.78
25	Oil & Grease	IS 3025 (Part 39) - 2021	mg/l	< 2

BDL - Below Detection Limit; DL - Detection limit;

00

Verified by

END OF REPORT

For Chennai Testing Laboratory Pvt ltd

A. Dajumy

Authorised Signatory A. RAJKUMAR Head - Water & Soll Division (CHEMICAL)

Page 2 of 2

The figure produces for the second science, while every the methods are been in the figure of the methods are been as a figure of the second science of th

ANNEXURE VI

LATEST NABL ACCREDITED & MoEF&CC RECOGNIZED THIRD PARTY LAB - AOX AND TOC TEST REPORT

From To AGM (Lab) AGM (WM)

14.5.2024

Shami M-1817 Thro' DGM (R&D)

AOX & TOC analysis report of final treated effluent water sample collected on 26.3.2024

S.No	Particulars	Unit	Results
1	Volume of effluent water discharged	m ³	27861
2	Paper Production	Tons	1364.81
3	AOX generated per ton of Paper	kg/t	0.09
4	TOC generated per ton of Paper	kg/t	1.14

Remarks: Norms: AOX -1kg / ton of paper (Maximum). TOC- No Norms.

R.S. Tankrany AGM (LAB)

CC:

CGM (0) -1/c AGM (ENV) CM (ENV) File - 95

TEST REPORT

Test Report No & Date	CTL/CH/N-38349/2023-24 & 03.04.2024
Sample Number	N-38349/23-24
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],
Address	Kagithapuram - 639 136,
NAME OF BRIDE	Karur District, Tamil Nadu.
Sample Drawn by	Laboratory
Sample Name	Effluent Water
Sample Description	Treated Effluent Water
Sampling Location	Secondary Clarifler Outlet
GPS Reading	11"03"9.805"'N & 77"59"59.05"'E
Sample Drawn on	26.03.2024
Sample Received on	29.03.2024
Sampling Plan & Procedure	Grab Sample & CTL/QSP/09
Sample Quantity	2 Litres
Sample Condition	Good & Received in Plastic Container
Environmental Conditions	Temperature- 32.1°C and Humidity- 57.0%
Equipment used for Sampling	NA
Analysis Started on	29.03.2024
Analysis Completed on	03.04.2024

Test Resulta:

The above sample tested as received, and results are as follows:

S. NO	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS*
1	pH @ 25*C	IS 3025 (Part 11)-1983 (RA.2017)	14	8.1	5.5 to 9.0
2	Colour	IS: 3025 (Part 4)- 2021	HU	50	
3	Total Dissolved Solids	IS 3025 (Part 16)-1984 (RA.2017)	mg/l	2040	Max.2100
4	Total Suspended Solids	IS 3025 (Part 17) -1984 (RA.2021)	mg/l	37	Max.100
5	Biochemical Oxygen Demand (BOD) 3 days at 27°C	IS 3025 (Part 44) -1993 (RA.2019)	mg/l	17	Max.30
6	Chemical Oxygen Demand (COD)	IS 3025 (Part 58)-2006 (RA:2017)	mg/l	148	Max.250
7	Chloride as Cl	IS 3025 (Part 32)-1988 (RA.2019)	mg/l	669	Max.1000
8	Sulphate as SO4	IS 3025 (Part 24/sec -1) - 2022	mg/l	398	Max.1000
9	Oil & Grease	IS 3025 (Part 39) - 2021	mg/l	< 2	Max.10
10	Ammonical Nitrogen as N	15 3025 (Part 34)-1988 (RA.2019)	mg/l	2.1	Max.50
11	Total Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	9.4	
12	Total Kjeldahl Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	5.3	Max.100
13	Phenolic Compounds as C ₆ H ₅ OH	IS 3025 (Part 43/sec 1) 2022	mg/l	BDL(DL:0.001)	*
14	Percent Sodium	CTL/SOP/WATER/60-2022	96	35.29	-
15	Sulphide as S	IS 3025 (Part 29)-1986 (RA.2019)	mg/l	BDL(DL:0.01)	Max.2.0

For Chennai Testing Laboratory Pvt ltd

A. Dajummy

Authorised Signatory

A. RAJKUMAR Head - Water & Soil Division (CHEMICAL)

Page 1 of 2

The August is proper with the price and will addressing to an array building over having

A - Super 19 | T.V.K. Industrial Estate | Guindy | E-mail : chennallestinglab@gmail.com

Chennai - 600 032 | Tamil Nadu | India | Telefax : +91-44-2250 1757

E-mail : chenneltestinglab@gmail.com Telefuv : +91.44.2250 1757

Cal Verified by

www.ctilabs.in

CIN: U93000TN2000PTC043869

TEST REPORT

l	Test Report No & Date	CTL/CH/N-38349/2023-24 & 03.04.2024

s. NO	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS*
16	Total Organic Carbon (TOC)	5310-C-APHA 23rd Ed.2017	mg/l	55.63	
17	AOX	EPA 1653,5021&8260	mg/l	4.5	

BDL - Below Detection Limit; DL - Detection limit; Max. - Maximum. *Limits as per TNPCB Norms for Trade Effluent

END OF REPORT

See

Verified by

For Chennal Testing Laboratory Pvt ltd

A. Dajum

Authorised Signatory

A. RAJKLIMAR Head - Water & Soli Division (CHEMICAL)

Page 2 of 2

pdn- to-1364.8101 Flows- 27869.

Aox = .0.09TOC = 1.14

A - Super 19 | T.V.K. Industrial Estate | Guindy | E-mail : chennallestinglab@gmail.com

Chennal - 600 032 | Tamil Nadu | India | Telefax : +91-44-2250 1757

From	То
AGM (Lab)	AGM (Env)
	19.3.2024

Shamin Munul Inro' DGM(R&D)

AOX & TOC analysis report of final treated effluent water sample collected on 22.2.2024

S.No	Particulars	Unit	Results
1	Volume of effluent water discharged	m³	26876
2	Paper Production	Tons	1058.32
3	AOX generated per ton of Paper	kg/t	0.10
4	TOC generated per ton of Paper	kg/t	0.90

Remarks: Norms: AOX -1kg / ton of paper (Maximum). TOC- No Norms.

AGM (LAB)

CC:

CGM (0) -1/c AGM (ENV) CM (ENV) File - 95

www.ctllabs.in

TEST REPORT

N-36807/23-24	
M/S. TAMIL NADU NEWSPRINT AND PAPERS	LIMITED [MAIN PLANT],
Kagithapuram - 639 136,	
Karur District, Tamil Nadu.	and the second
Laboratory	
Effluent Water	
Treated Effluent Water	
Secondary Clarifier Outlet	
11*03'9.805"N & 77*59'59.05"E	
22.02.2024	
24.02.2024	
Grab Sample & CTL/QSP/09	
2 Litres	
Good & Received in Plastic Container	
Temperature- 31.5°C and Humidity- 57.0%	
NA	
24.02.2024	
06.03.2024	A large French and the
	Kagithapuram - 639 136, Karur District, Tamil Nadu. Laboratory Effluent Water Treated Effluent Water Secondary Clarifier Outlet 11*03*9.805''N & 77*59*59.05''E 22.02.2024 24.02.2024 Grab Sample & CTL/QSP/09 2 Litres Good & Received in Plastic Container Temperature- 31.5*C and Humidity- 57.0% NA 24.02.2024

Test Results:

The above sample tested as received, and results are as follows:

S. NO	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS*
1	pH@25*C	IS 3025 (Part 11)-1983 (RA.2017)		8.1	5.5 to 9.0
2	Colour	15: 3025 (Part 4)- 2021	HU	50	
3	Total Dissolved Solids	IS 3025 (Part 16)-1984 (RA.2017)	mg/l	2076	Max.2100
4	Total Suspended Solids	IS 3025 (Part 17) -1984 (RA.2021)	mg/l	. 32	Max.100
5	Biochemical Oxygen Demand (BOD) 3 days at 27°C	IS 3025 (Part 44) -1993 (RA 2019)	mg/l	16	Max.30
6	Chemical Oxygen Demand (COD)	IS 3025 (Part 58)-2006 (RA:2017)	mg/l	194	Max.250
7	Chloride as Cl	IS 3025 (Part 32)-1988 (RA.2019)	mg/l	656	Max.1000
B	Sulphate as SO4	IS 3025 (Part 24/sec -1) - 2022	mg/l	329	Max.1000
9	Oil & Grease	IS 3025 (Part 39) - 2021	mg/l	<2 ·	Max.10
10	Ammonical Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	2.4	Max.50
11	Total Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	9.5	+
12	Total Kjeldahl Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	6.3	Max.100
13	Phenolic Compounds as C ₆ H ₅ OH	IS 3025 (Part 43/sec 1) 2022	mg/l	BDL(DL:0.001)	-
14	Percent Sodium	CTL/SOP/WATER/60-2022	96	41.07	
15	Sulphide as S	IS 3025 (Part 29)-1986 (RA 2019)	mg/l	BDL(DL:0.01)	Max 2.0

For Chennal Testing Laboratory Pvt ltd

The Report shall not be used to matter, defense and for any methods and the set Signator

A - Super 19, T.V.K. Industrial Estate, Guindy, Chennale Sto MS22 Tareib advis ladiage 1 of 2

www.ctllabs.in

TEST REPORT

Test Report No & Date

CTL/CH/N-36807/2023-24 & 06.03.2024

S. NO	PARAMETERS	METHOD .	UNITS	RESULTS	LIMITS*
16	Total Organic Carbon (TOC)	5310-C-APHA 23rd Ed.2017	mg/l	35.4	•
17	AOX	EPA 1653,5021&8260	mg/l	4.1	

BDL - Below Detection Limit; DL - Detection limit; Max. - Maximum.

*Limits as per TNPCB Norms for Trade Ellluent

END OF REPORT

For Chennal Testing Laboratory Pvt ltd

Authorised Signatory

A. RAJKUMAR Head - Water & Soil Division (CHEMICAL)

Page 2 of 2

The Repi et chall not be used to molign, definee and for any multilout purpose The Argunt is meant only for sole use of the addressee to promote No, her own busine

A - Super 19, T.V.K. Industrial Estate, Guindy, Chennai - 600 032, Tamil Nadu - India

То From AGM (Env) AGM (Lab) 20.2.2024 Sharming 20/2/24 Thro' DGM (R&D)

AOX & TOC analysis report of final treated effluent water sample collected on 30.1.2024

S.No	Particulars	Unit	Results
1	Volume of effluent water discharged	m ³	27432
2	Paper Production	Tons	1113.55
3	AOX generated per ton of Paper	kg/t	0.08
4	TOC generated per ton of Paper	kg/t	0.97

Remarks: Norms: AOX -1kg / ton of paper (Maximum). TOC- No Norms.

R.S. Tamberry AGM (LAB)

CC:

CGM (0) - 1/c

CM (ENV) File - 95

www.ctllabs.in

TEST REPORT

Test Report No & Date	CTL/CH/N-35279/2023-24 & 07.02.2024	
Sample Number	N-35279/23-24	
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT]	
Address	Kagithapuram - 639 136,	
	Karur District, Tamil Nadu.	
Sample Drawn by	Laboratory	
Sample Name	Effluent Water	
Sample Description	Treated Effluent Water	
Sampling Location	Secondary Clarifier Outlet	
"S Reading	11°03'9.805"N & 77°59'59.05"E	
sample Drawn on	30.01,2024	
Sample Received on	01.02.2024	
Sampling Plan & Procedure	Grab Sample & CTL/QSP/09	
Sample Quantity	2 Litres	
Sample Condition	Good & Received in Plastic Container	
Environmental Conditions	Temperature- 32.3°C and Humidity- 56.0%	
Equipment used for Sampling	NA	
Analysis Started on	01.02.2024	
Analysis Completed on	07.02.2024	

Test Results:

The above sample tested as received, and results are as follows:

S. NO	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS*
1	pH @ 25°C	IS 3025 (Part 11)-1983 (RA.2017)		8.1	5.5 to 9,0
2	Colour	IS: 3025 (Part 4)- 2021	HU	50	
3	Total Dissolved Solids	IS 3025 (Part 16)-1984 (RA.2017)	mg/l	1970	Max.2100
4	Total Suspended Solids	IS 3025 (Part 17) -1984 (RA.2021)	mg/l	34	Max.100
5	Biochemical Oxygen Demand (BOD) 3 days at 27°C	IS 3025 (Part 44) -1993 (RA.2019)	mg/l	22	Max.30
6	Chemical Oxygen Demand (COD)	IS 3025 (Part 58)-2006 (RA:2017)	mg/l	116	Мак.250
7	Chioride as Cl	IS 3025 (Part 32)-1988 (RA.2019)	mg/l	630	Max.1000
8	Sulphate as SO4	IS 3025 (Part 24/sec -1) + 2022	mg/l	294	Max.1000
9 1	Oil & Grease	IS 3025 (Part 39) - 2021	mg/l	<2	Max.10
10	Ammonical Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	3.5	Max.50
11	Total Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	15.3	-
12	Total Kjeldahl Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	9.4	Max.100
13	Phenolic Compounds as C ₆ H ₅ OH	IS 3025 (Part 43/sec 1) 2022	mg/l	BDL(DL:0.001)	
14	Percent Sodium	CTL/SOP/WATER/60-2022	96	40.08	
15	Sulphide as S	IS 3025 (Part 29)-1986 (RA.2019)	mg/l	BDL(DL:0.01)	Max.2.0

For Chennal Testing Laboratory Pvt ltd

Resid

The Report is meant only for side use of the addressee to promote Myther or Avair RASIROMAN

A - Super 19, T.V.K. Industrial Estate, Guindy, Chennai H690 092 (ErrailStation Visitia

www.ctllabs.in

TEST REPORT

Test Report No & Date

CTL/CH/N-35279/2023-24 & 07.02.2024

S. NO	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS*
16	Total Organic Carbon (TOC)	5310-C-APHA 23rd Ed.2017	mg/l	39.4	
17	AOX	EPA 1653,5021&8260	mg/l	3.2	1

BDL - Below Detection Limit; DL - Detection limit; Max. - Maximum.

*Limits as per TNPCB Norms for Trade Effluent

END OF REPORT

For Chennai Testing Laboratory Pvt ltd

2m Authorised Signator

Page 2 of 2

A. RAJKUMAR Head - Water & Soil Division (CHEMICAL)

3011124

\$600 - 27432. pdn - 1

1113 5503

The Report shall exit be used to maker, defame and for any malicbus purpose. The Report is meant any for sale use of the addressee to promote higher own business.

A - Super 19, T.V.K. Industrial Estate, Guindy, Chennal - 600 032, Tamil Nadu - India

То From AGM (Env) AGM (Lab) 20.2.2024 Thro' DGM (R&D)

AOX & TOC analysis report of final treated effluent water sample collected on 27.12.2023

S.No	Particulars	Unit	Results
1	Volume of effluent water discharged	m³	27152
2	Paper Production	Tons	857.2873
3	AOX generated per ton of Paper	kg/t	0.11
4	TOC generated per ton of Paper	kg/t	1.07

Remarks: Norms: AOX -1kg / ton of paper (Maximum). TOC- No Norms.

AGM (LAB)

CC:

CGM (0) - 1/c

CM (ENV) File - 95

www.ctllabs.in

TEST REPORT

Test Report No & Date	CTL/CH/N-33777/2023-24 & 05.01.2024				
Sample Number	N-33777/23-24				
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],				
Address	Kagithapuram - 639 136,				
	Karur District, Tamil Nadu.				
Sample Drawn by	Laboratory				
Sample Name	Effluent Water				
Sample Description	Treated Effluent Water				
Sampling Location	Secondary Clarifier Outlet				
F ¹⁹ S Reading	11"03"9.805"N & 77"59'59.05"E				
Smple Drawn on	27.12.2023				
Sample Received on	29.12.2023				
Sampling Plan & Procedure	Grab Sample & CTL/QSP/09				
Sample Quantity	2 Litres				
Sample Condition	Good & Received in Plastic Container				
Environmental Conditions	Temperature- 32.0°C and Humidity- 55.2%				
Equipment used for Sampling	NA				
Analysis Started on	29.12.2023				
Analysis Completed on	05.01.2024				

Test Results:

The above sample tested as received, and results are as follows:

S. NO	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS*
1	pH @ 25°C	IS 3025 (Part 11)-1983 (RA.2017)	+	8.3	5.5 to 9.0
2	Colour	IS: 3025 (Part 4)- 2021	ни	50	
3	Total Dissolved Solids	IS 3025 (Part 16)-1984 (RA.2017)	mg/l	1980	Max.2100
4	Total Suspended Solids	IS 3025 (Part 17) -1984 (RA.2021)	mg/l	30	Max.100
5	Biochemical Oxygen Demand (BOD) 3 days at 27°C	IS 3025 (Part 44) -1993 (RA.2019)	mg/l	23	Max.30
6	Chemical Oxygen Demand (COD)	IS 3025 (Part 58)-2006 (RA:2017)	mg/l	102	Max.250
7	Chloride as Cl	IS 3025 (Part 32)-1988 (RA.2019)	mg/l	596	Max.1000
8	Sulphate as \$04	IS 3025 (Part 24/sec -1) - 2022	mg/l	288	Max.1000
9	Oil & Grease	IS 3025 (Part 39) - 2021	mg/l	o <2	Max.10
10	Ammonical Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	4.1	Max.50
11	Total Nitrogen as N	IS 3025 (Part 34)-1988 (RA 2019)	mg/l	13.9	+
12	Total Kjeldahl Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	6 das 8.6	Max.100
13	Phenolic Compounds as C4H50H	IS 3025 (Part 43/sec 1) 2022	mg/l	BBL(DL:0.001)	-
14	Percent Sodium	CTL/SOP/WATER/60-2022	%	50.21	
15	Sulphide as S	IS 3025 (Part 29)-1986 (RA.2019)	mg/l	BDL(DL:0.01)	Max.2.0

For Chennai Testing Laboratory Pvt ltd

Authorised The Report shell not it lps, elefo ne and for any A AR The Report is meant only for sole use of the oddressee to p a bia da

vision Page 1 of 2 A - Super 19, T.V.K. Industrial Estate, Guindy, Chennai +600 0 CHE

www.ctllabs.in

TEST REPORT

Test Report No & Date CTL/CH/N-33777/2023-24 & 05.01.2024

S. NO	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS*
16	Total Organic Carbon (TOC)	5310-C-APHA 23rd Ed.2017	mg/l	33.68	
17	AOX	EPA 1653,5021&8260	mg/l	3.4	

BDL - Below Detection Limit; DL - Detection limit; Max. - Maximum.

*Limits as per TNPCB Norms for Trade Effluent

END OF REPORT

For Chennai Testing Laboratory Pvt ltd

Authorised Signatory

A. RAJKUMAR Page 2 of 2 Head - Water & Soil Division (CHEMICAL)

27/12/23,

flow - 27152 pan = 857.2873

> The Report shall not be used to malign, defame and for any malicinus purpose. The Report is meant unly for sole use of the addressee to promote Mi/free own business.

A - Super 19, T.V.K. Industrial Estate, Guindy, Chennai - 600 032, Tamil Nadu - India

From	То
AGM (Lab)	AGM (Env)
	- 18 12 2023

AOX & TOC analysis report of final treated effluent water sample collected on 22.11.2023.

S.No	Particulars	Unit	Results
1	Volume of effluent water discharged	m³	23981
2	Paper Production	Tons	1325.582
3	AOX generated per ton of Paper	kg/t	0.04
4	TOC generated per ton of Paper	kg/t	0.67

Remarks: Norms: AOX -1kg / ton of paper (Maximum). TOC- No Norms.

R. S. Am harry AGM (LAB) 18/12/23

CC:

ED (O)-FAC GM (Energy, Pulp & SR) File - 95

www.ctllabs.in

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date Sample Number Name of the Customer Address	CTL/CH/N-31459/2023-24 & 30.11.2023 N-31459/23-24 M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT], Kagithapuram - 639 136, Karur District, Tamil Nadu.	
Sample Drawn by	Laboratory	
Sample Name	Effluent Water	
Sample Description	Treated Effluent Water	
Sampling Location	Secondary Clarifier Outlet	
GPS Reading	11°03'9.805"N & 77°59'59.05"E	
Sample Drawn on	22.11.2023	
Sample Received on	23.11.2023	
Sampling Plan & Procedure	Grab Sample & CTL/QSP/09	
Sample Quantity	2 Litres	
Sample Condition	Good & Received in Plastic Container	
Environmental Conditions	Temperature- 31.3°C and Humidity- 54.8%	
Equipment used for Sampling	NA	
Analysis Started on	23.11.2023	
Analysis Completed on	30.11.2023	

Test Results:

as received, and results are as follows:

S.NO	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS*	
1	pH @ 25°C	IS 3025 (Part 11)-1983 (RA.2017)		8.1	5.5 to 9.0	
2	Colour	IS: 3025 (Part 4)- 2021	HU	50	•	
3	Total Dissolved Solids	IS 3025 (Part 16)-1984 (RA.2017)	mg/l	2010	Max.2100	
4	Total Suspended Solids	IS 3025 (Part 17) -1984 (RA.2021)	mg/l	14	Max.100	
5	Biochemical Oxygen Demand (BOD) 3 days at 27°C	IS 3025 (Part 44) -1993 (RA.2019)	mg/l	20	Max.30	
6	Chemical Oxygen Demand (COD)	IS 3025 (Part 58)-2006 (RA:2017)	mg/l	110	Max.250	
7	Chloride as Cl	IS 3025 (Part 32)-1988 (RA.2019)	mg/l	656	Max.1000	
8	Sulphate as SO4	IS 3025 (Part 24/sec -1) - 2022	mg/l	403	Max.1000	
9	Oil & Grease	IS 3025 (Part 39) - 2021	mg/l	<2	Max.10	
10	Ammonical Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	3.5	Max.50	
11	Total Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	11.9		
12	Total Kjeldahl Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	7.8	Max.100	
13	Phenolic Compounds as CeHsOH	IS 3025 (Part 43/sec 1) 2022	mg/l	BDL(DL:0.001)	-	
14	Percent Sodium	CTL/SOP/WATER/60-2022	%	52.86	+	
15	Sulphide as S	IS 3025 (Part 29)-1986 (RA.2019)	mg/l	BDL(DL-0.01)	Max.2.0	

For Chennai Testing Laboratory Pvt ltd

V. Ly X-Verified by A-Super 19, T.V.K. Industrial Estate, Guindy, Chennai - 600 03 A. RAJ 化加加常

Phone : +91-44-2250 1757 | E-mail : chennaitesting@chennbitestinglatScohDivision

www.ctllabs.in

TEST REPORT

Test Report No & Date

CTL/CH/N-31459/2023-24 & 30.11.2023

s, no	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS*
16	Total Organic Carbon (TOC)	5310-C-APHA 23rd Ed.2017	mg/l	36.8	-
17	AOX	EPA 1653,5021&8260	mg/l	2.1	

BDL - Below Detection Limit; DL - Detection limit; Max. - Maximum.

*Limits as per TNPCB Norms for Trade Effluent

END OF REPORT

V. Xugy

For Chennai Testing Laboratory Pvt ltd

Page 2 of 2

A . Day u

A. RAJKUMAR Head - Water & Soil Division (CHEMICAL)

The Report shall not be used to modips, defone and for any malizous parameter. The Report is mean only for sole use of the addresses to promote his/her own business.

A - Super 19, T.V.K. Industrial Estate, Guindy, Chennai - 600 032, Tamil Nadu - India

From	То
AGM (Lab)	AGM (WM)
	18.11.2023

AOX & TOC analysis report of final treated effluent water sample collected on 26.10.2023

S.No	Particulars	Unit	Results
1	Volume of effluent water discharged	m ³	25640
2	Paper Production	Tons	1065.05
3	AOX generated per ton of Paper	kg/t	0.07
4	TOC generated per ton of Paper	kg/t	0.91

Remarks: Norms: AOX -1kg / ton of paper (Maximum). TOC- No Norms.

R.S. Tambers AGM (LAB)

CC:

CGM (O) – 1 /c AGM (ENV) CM (ENV) File - 95

www.ctllabs.in

TEST REPORT

Test Report No & Date	CTL/CH/N-30186/2023-24 & 04.11.2023				
Sample Number	N-30186/23-24				
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],				
Address	Kagithapuram - 639 136,				
	Karur District, Tamil Nadu.				
Sample Drawn by	Laboratory				
Sample Name	Effluent Water				
Sample Description	Treated Effluent Water				
Sampling Location	Secondary Clarifier Outlet				
GPS Reading	11"03'9.805"N & 77"59'59.05"E				
Sample Drawn on	26.10.2023				
mple Received on	28.10.2023				
Sampling Plan & Procedure	Grab Sample & CTL/QSP/09				
Sample Quantity	2 Litres				
Sample Condition	Good & Received in Plastic Container				
Environmental Conditions	Temperature- 30.8°C and Humidity- 54.6%				
Equipment used for Sampling	NA				
Analysis Started on	28.10.2023				
Analysis Completed on	04.11.2023				

Test Results:

The above sample tested as received, and results are as follows:

S. NO	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS*	
1	pH @ 25°C	IS 3025 (Part 11)-1983 (RA.2017)		7.9	5.5 to 9.0	
2	Colour	IS: 3025 (Part 4)- 2021	HU	10		
3	Total Dissolved Solids	IS 3025 (Part 16)-1984 (RA.2017)	mg/l	2042	Max.2100	
4	Total Suspended Solids	IS 3025 (Part 17) -1984 (RA2021)	mg/l	12	Max.100	
)5	Biochemical Oxygen Demand (BOD) 3 days at 27°C	IS 3025 (Part 44) -1993 (RA.2019)	mg/l	24	Max.30	
6	Chemical Oxygen Demand (COD)	15 3025 (Part 58)-2006 (RA:2017)	mg/l	112	Max.250	
7	Chloride as Cl	IS 3025 (Part 32)-1988 (RA.2019)	mg/l	466	Max.1000	
8	Sulphate as SO ₄	15 3025 (Part 24/sec -1) - 2022	mg/l	271	Max.1000	
9	Oil & Grease	15 3025 (Part 39) - 2021	mg/l	< 2	Max.10	
10	Ammonical Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/î	4.1	Max.50	
11	Total Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	9.2		
12	Total Kjeldahl Nitrogen as N	IS 3025 (Part 34)-1988 (RA.2019)	mg/l	6,6	Max.100	
13	Phenolic Compounds as C ₆ H ₅ OH	IS 3025 (Part 43/sec 1) 2022	mg/l	BDL(DL:0.001)		
14	Percent Sodium	CTL/SOP/WATER/60-2022	%	62.06	(+)	
15	Sulphide as S	IS 3025 (Part 29)-1986 (RA.2019)	mg/l	BDI.(DL:0.01)	Max.2.0	

For Chennai Testing Laboratory Pvt ltd

٩

V. Kupty

The Report shall out be used to make, defense and for any matrices purpose. A. Rc-The Report is meant only for sole use of the addresses to promote higher of Author Sed Signatory

A - Super 19, T.V.K. Industrial Estate, Guindy, Chennai - 600 A32 RAJKUMAR Page 1 of 2

Phone : +91-44-2250 1757 | E-mail : chennaltesting dead w MateridgSdirDIVision

(CHEMICAL)

www.ctllabs.in

TEST REPORT

CTL/CH/N-30186/2023-24 & 04.11.2023

S. NO	PARAMETERS	METHOD	UNITS	RESULTS	LIMITS*
16 Total Organic Carbon (TOC)		5310-C-APHA 23rd Ed.2017 mg/l		38.0	•
17	AOX	EPA 1653,5021&8260	mg/l	2.8	

L - Below Detection Limit; DL - Detection limit; Max. - Maximum.

*Limits as per TNPCB Norms for Trade Effluent

END OF REPORT

V. Xugey

Test Report No & Date

For Chennai Testing Laboratory Pvt ltd

A . Run u

A. RAJKUMAR Head - Water & Soil DivisionPage 2 of 2 (CHEMICAL)

Pdn - 1065.0508 pox = 0.07 rlow - 25640 Toc = 0.91

The Report shall not be used to malign, defance and for any multicloss purpe

The Report is mount only for sole use of the addressee to promote higher own business

A - Super 19, T.V.K. Industrial Estate, Guindy, Chennai - 600 032, Tamil Nadu - India

ANNEXURE VII

COMPREHENSIVE WATER MANAGEMENT PLAN

WATER AND WASTE WATER RECYCLING MANAGEMENT IN TNPL

TNPL has completed Mill Development Plan (MDP) in May'08 with a capital expenditure of Rs.612 crores and is successfully operating to achieve more environmental friendly operational performance of the mill by adopting *state of the art* Elemental Chlorine Free bleaching technique and simultaneously accomplished the objective of modernization of the process technology with a marginal increase in production capacity. Further, TNPL has implemented Mill Expansion Plan (MEP) by installing a third Paper Machine to enhance the production capacity from 245,000 tpa to 400,000 tpa and reduced specific water consumption.

The mill has implemented the following major water conservation (To reduce waste water generation) and waste water recycling (To reduce TDS in Waste water) projects to improve the overall environmental performance of the mill operations.

To reduce TDS in Waste water

- Recycling of around 1800M³ EOP alkaline filtrate in post Oxygen washer in hardwood fiber line operations by close looping Extraction stage effluent from hardwood into the brown loop to reduce TDS in the waste water.
- Return of soft water back to soft water plant after usage in NIPCO hydraulic system to reduce soft water re-generation.
- Recycling any chemical Bagasse fibre line EOP filtration in the post oxygen press to close the brown loop to reduce TDS in Waste water.

To reduce waste water generation

- > Polishing excess clear filtrate of PM#1 using Algas filter.
- > Recycling of around 9000 M₃ Paper Machine Effluent after clarification in raw material preparation
- > Recovery of steam condensate from chlorine vaporiser and pumping to cooling tower
- Use of excess hot water from hardwood fiber line for pulp washing in Chemical bagasse ECF bleach plant.
- > Recovery of pump seal cooling water and pumping to cooling tower
- > Re-circulation of chlorine di-oxide generator cooling process water to cooling tower
- > Recovery of dilution air compressor water and pumping to cooling tower
- > Re-circulation of New Hardwood fibreline Hydraulic cooling water to water treatment plant
- > Replacing of freshwater with cooling water for Recovery Boiler-3 feed pump cooling system
- > Re-circulation of the chlorine di-oxide plant transformer rectifier cooling water to cooling tower
- > Reusing of white liquor clariant disc (WLCD) compressor sealing water and condenser cooling water
- > Use of process condensate in brown stock washing in bagasse pulping line.
- > Replacing of freshwater with cooling water for Recovery Boiler-3 spout cooling system
- > Re-circulation of CB-ECF plant Hydraulic cooling water within the system

- > Replacement of conventional drum washers with twin roll presses to reduce water consumption
- Adaptation of improved technologies to re-use super clear filtrate from Paper Machine #3 backwater to minimize the fresh water usage.
- Recycling of Pick-up Uhle Box Water to White water chest/seal water tank to minimize make up in Fresh water in PM#2
- > Use of PM/c back water for cationic starch cooking instead of fresh water
- > Diversion of Algas filter water to culvert pit make up to avoid fresh water make up in PM#1.
- Replacement of fresh water with EOP filtrate for Optimization of fresh water for scrubber dilution in HW street
- Replacement of hot water with EOP filtrate in Post Oxygen Washer (POW) 2 Press in Chemical Bagasse street.
- Replacement of fresh water with Machine backwater for wet lap #2 and #3 usage and reuse of Wetlap # 2 filtrate in De-inking plant (through Wetlap # 3)
- Replacement of fresh water / process condensate with Back Water Clarification System water in flushing box at digester in Chemical Bagasse street
- > Buffering Wetlap 1 Filtrate / PM/c back water in Mechanical Bagasse Pulp tower and reuse at HW
- Final tower stand pipe dilution Replacement of fresh water with Machine backwater for wet lap #1 usage
- > Diversion of Algas filter water to culvert pit make up to avoid fresh water make up in PM#1.
- > Recycling of Uhle Box Water to White water chest to minimize make up in Fresh water in PM#2
- > Use of PM/c back water for cationic starch cooking instead of fresh water
- > Online dilution for A-PAM and C-PAM (RDA) in Paper Machine
- > Return of water after usage from Alfa-2 evaporator and RB#3 to water treatment plant
- > Recycling of water after usage from Alfa-1 evaporator to chemical bagasse plant
- > Usage of excess process condensate in causticizing pumps and Alfa 1 evaporator pumps
- > Diversion of algas filter drain to WW-2 PM#1.
- Installation of Water collection tray for bottom press felt in PM#1
- > Utilization of Machine backwater for floor cleaning inPM#1,2 &3
- Replacement of high pressure shower nozzle size (0.7 mm from 1.0 mm) of Bottom & Top press fabrics in PM#1
- > Diversion of tertiary screen reject to WW2 by processing through vibrating screen in PM#1
- Collection and diversion of bottom press felt high pressure shower water to vacuum pump sever pit in PM#2
- Replacement of fresh water with machine back water for cationic starch preparation in PM#3 Replacement of fresh water with machine back water for online dilution of A-PAM & C-PAM in PM#3 Collection of filler unloading and dosing pump seal water and transfer to warm water tank at CCK (PM#3)

- > Diversion of excess cloudy filtrate over flow water to clear chest in PM#3
- > Replacement of fresh water with machine back water to dilute cationic starch slurry at CCK
- Replacement of existing 0.9 & 0.7 mm H.P shower nozzles size with 0.7 & 0.6 mm for forming and press fabric at PM#3
- Replacement of fresh water with machine back water for dispersing Machine discharge pump and line flushing at CCK
- Replacement of fresh water with machine back water for WPCC/WGCC slurry unloading pump and line flushing at CCK
- > Replacement of fresh water with machine back for save- all cleaning in paper machine#3.
- The sulphide stripping plant is operating continuously and the strip-off gas is incinerated in lime kiln along with non - condensable gases. After removal of sulphide from the Evaporator Vacuum Pump seal water of 1000 KLD is recycled to process conserving an equivalent amount of fresh water.

In order to further reduce water consumption, a dedicated team of executives has been formed with members drawn from various departments. The team is identifying and implementing various water conservations schemes without affecting quality of product and treated effluent.

These steps have paved way to reduce

- Overall water consumption from 70,000 M3/day during 2007 to about 40,000M3/day during 2016-17 even after increasing the paper production from 205000 tpa to 400000 tpa and in house pulp production from 165000 tpa to 264000 tpa.
- Specific water consumption from 102 M3/Ton of machine production during 2007 to about 28 M³/Ton of machine production during Apr'23 to Mar'24.

ANNEXURE VIII

COPIES OF FLY ASH DETAILS SUBMITTED TO O/O. JCEE, TNPCB, SALEM

Tamil Nadu Newsprint and Papers Limited

(A Government of Tamil Nadu Enterprise) Kagithapuram - 639 136, Pugalur Taluk, Karur Dist. Tamil Nadu, India. Phone: (0091) 04324-277001 to 10 - (10 Lines) Cell : 94860 41341 to 41343

ENV/02/24 April 5, 2024

The Joint Chief Environmental Engineer (Monitoring), No: 9, 4th cross street, Brindhavan road, Fairlands, Tamilnadu Pollution Control Board (TNPCB), Salem - 636016

Sir,

Sub: TNPL Captive Power Plant – Disposal of Fly Ash - Submission of Action Taken Report against the instruction issued- reg.

Ref: Letter No. JCEE (M)/TNPCB/F.67/KARUR/TNPL-CPP/2019 dated 06.11.2019.

We hereby acknowledge the receipt of the letter cited under reference.

It is submitted that the fly ash quantity generated from the TNPL Captive Power Plant are being utilized in the Cement Production at TNPL Mini Cement Plant (LSFM) unit details for the period between 01/01/2024 and 31/03/2024 is submitted hereunder for your kind information.

				All values are i		
Period	Fly ash opening Balance	Fly ash generation	Fly ash utilized for TNPL Cement Production	Fly ash disposed to outside agencies, if any	Fly ash Closing Balance	
01/01/2024 to 31/01/2024	422.26	1869	1802	0	489.26	
01/02/2024 to 29/02/2024	489.26	2658	2896	0	251.26	
01/03/2024 to 31/03/2024	251.26	3769	3371	0	649.26	

It is pertinent to note that the fly ash generated during last three months were utilized only for Cement Production in compliance to the directions issued vide reference cited above.

This is for your kind information and records.

Thanking you.

Yours faithfully, for M/s Tamil Nadu Newsprint and Papers Limited,

Chief Manager (Environment)

TNPL Corporate Office

67, Mount Road, Guindy, Chennai, TN, India - 600 032. Phone: 044-22354415,16,18 22301094 to 97 E - mail: response@tnpl.co.in, Web: www.tnpl.com Corporate ID No : L 22121 TN 1979 PL C 007799 TNPL Unit - II - Board Plant Kagitha Nagar, Mondipatti, K.Periyapatti Post, Manapparai Taluk, Tiruchirappalli District, Tamil Nadu, India - 621 306. Phone: 04332-261600 Cell: 94890 12793

dung are in MIT

TNPL - MAKER OF BAGASSE BASED ECO - FRIENDLY PAPER

Tamil Nadu Newsprint and Papers Limited

(A Government of Tamil Nadu Enterprise) Kagithapuram - 639 136, Pugalur Taluk, Karur Dist. Tamil Nadu, India. Phone: (0091) 04324-277001 to 10 - (10 Lines) Cell : 94860 41341 to 41343

ENV/02/23 January 9, 2024

The Joint Chief Environmental Engineer (Monitoring), No: 9, 4th cross street, Brindhavan road, Fairlands, Tamilnadu Pollution Control Board (TNPCB), Salem - 636016

Sir,

Sub: TNPL Captive Power Plant – Disposal of Fly Ash - Submission of Action Taken Report against the instruction issued- reg.

Ref: Letter No. JCEE (M)/TNPCB/F.67/KARUR/TNPL-CPP/2019 dated 06.11.2019.

We hereby acknowledge the receipt of the letter cited under reference.

It is submitted that the fly ash quantity generated from the TNPL Captive Power Plant are being utilized in the Cement Production at TNPL Mini Cement Plant (LSFM) unit details for the period between 01/10/2023 and 31/12/2023 is submitted hereunder for your kind information.

Period	Fly ash opening Balance	Fly ash generation	Fly ash utilized for TNPL Cement Production	Fly ash disposed to outside agencies, if any	Fly ash Closing Balance
01/10/2023 to 31/10/2023	358.26	3504	3598	0	264.26
01/11/2023 to 30/11/2023	264.26	2864	2507	0	621.26
01/12/2023 to 31/12/2023	621.26	2965	3164	0	422.26

It is pertinent to note that the fly ash generated during last three months were utilized only for Cement Production in compliance to the directions issued vide reference cited above.

This is for your kind information and records.

Thanking you.

Yours faithfully, for M/s Tamil Nadu Newsprint and Papers Limited,

Senior Manager (Environment)

TNPL Corporate Office

67, Mount Road, Guindy, Chennai, TN, India - 600 032. Phone: 044-22354415,16,18 22301094 to 97 E - mail: response@tnpl.co.in, Web: www.tnpl.com Corporate ID No : L 22121 TN 1979 PL C 007799 TNPL Unit - II - Board Plant Kagitha Nagar, Mondipatti, K.Periyapatti Post, Manapparai Taluk, Tiruchirappalli District, Tamil Nadu, India - 621 306. Phone: 04332-261600 Cell: 94890 12793 GASSE BASED ECO - ERIENDLY PAPER

TNPL - MAKER OF BAGASSE BASED ECO - FRIENDLY PAPER

ANNEXURE IX

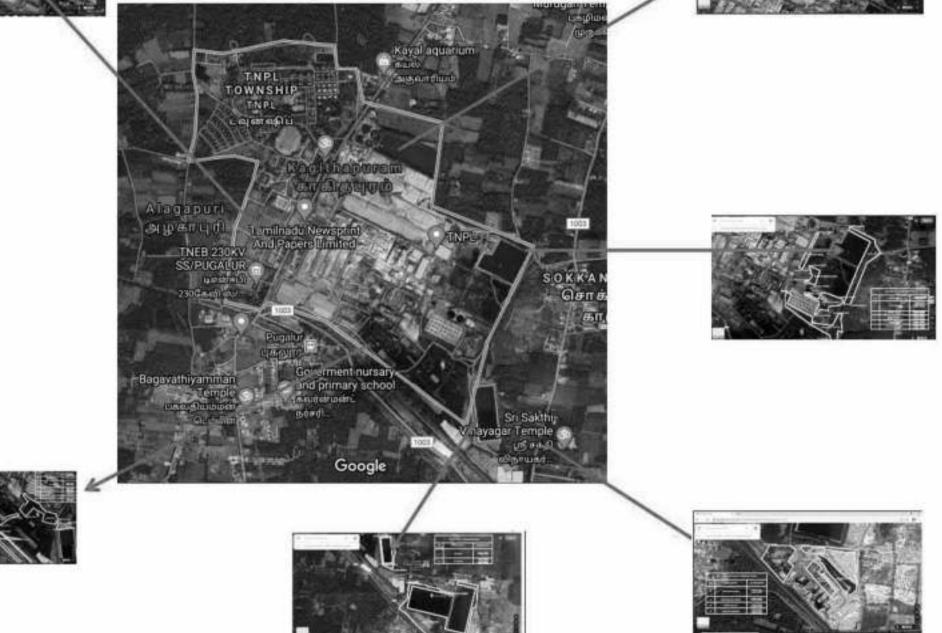
GREEN BELT DETAILS

GREEN BELT DEVELOPMENT AT TNPL - 2023-24

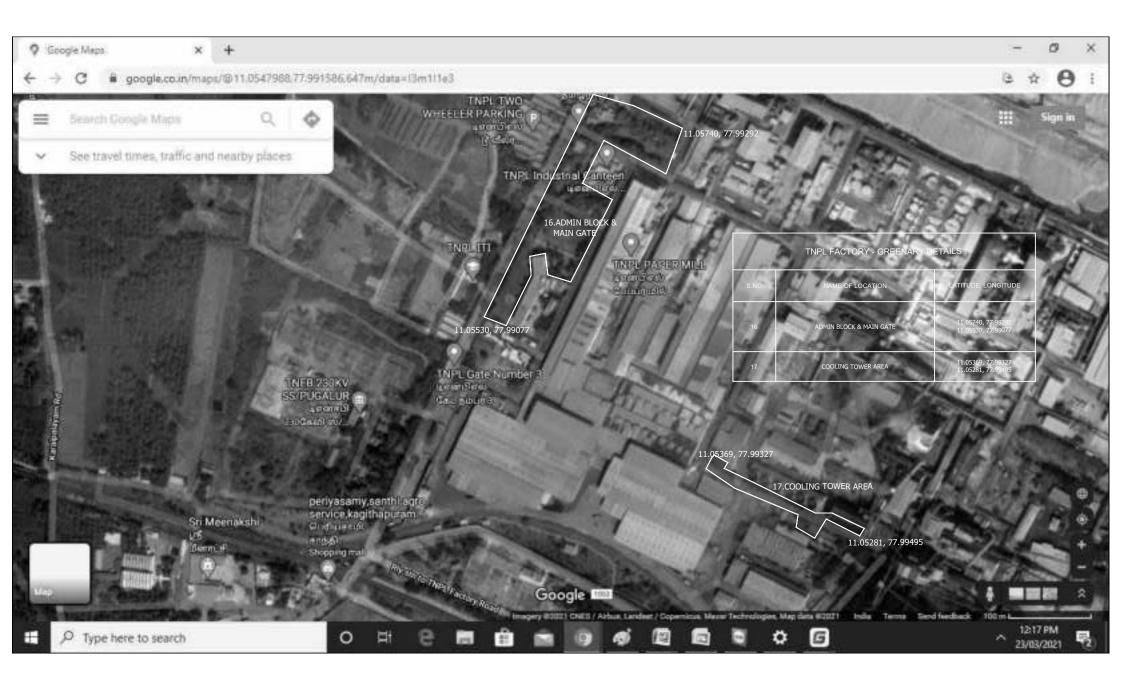
ABSTRACT

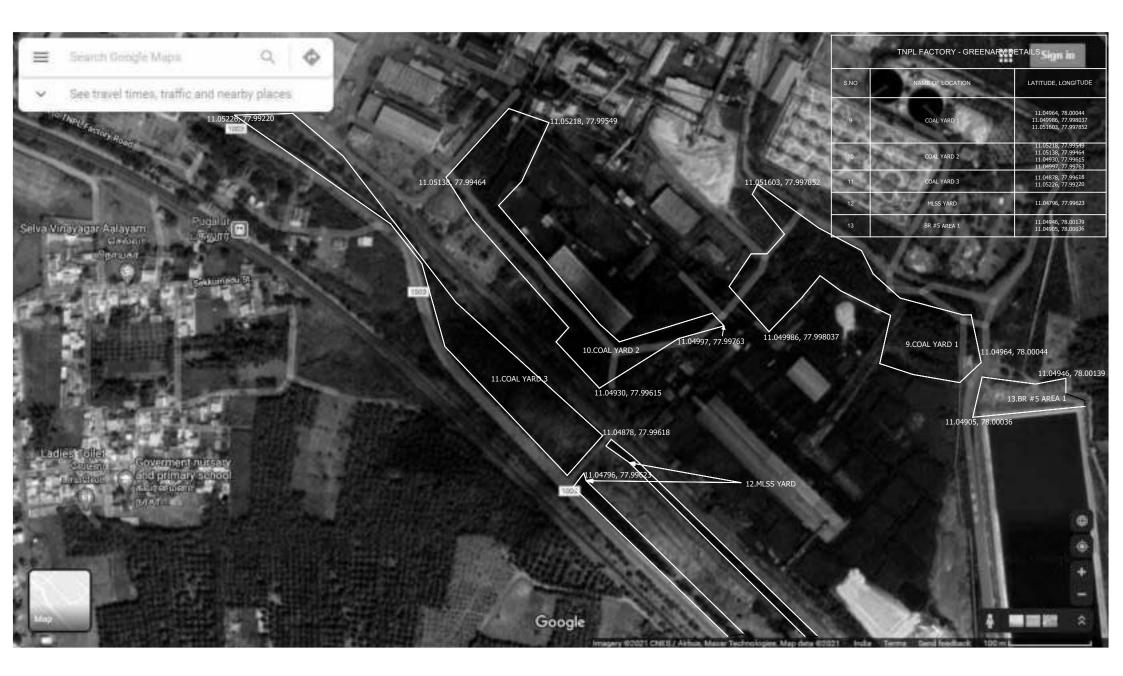
SL. NO	LOCATION	TOTAL AREA. IN HA	AREA TO BE COVERED UNDER GREEN COVER (33%) IN HA	GREEN COVER DEVELOPED IN HA	NO. OF TREES DEVELOPED	% OF GREEN BELT VS TOTAL AREA
1	MAIN PLANT	83.56	27.57 (33%)	32.11	103304	38.42%
2	CAPTIVE POWER PLANT	38.16	12.59(33%)	16.17	45503	42.37%
	TOTAL	121.72	40.16 (33%)	48.28	148807	40.39%

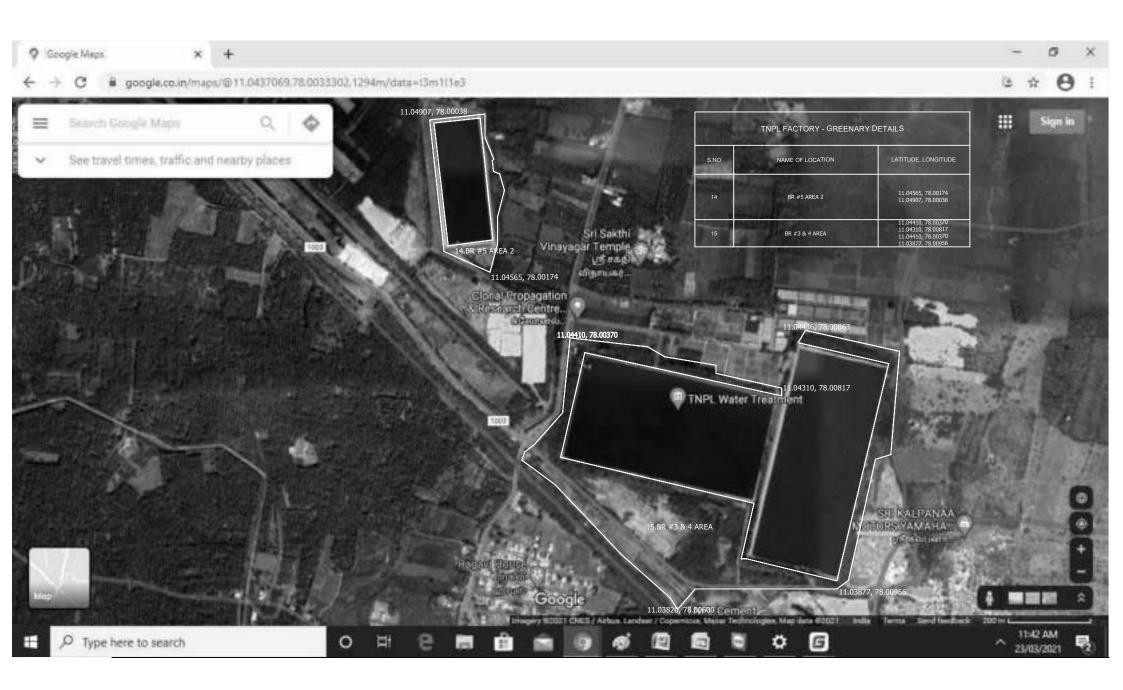
MAIN PLANT


SL.N O	Name of the Tree	No.of Trees
1	Peltophorum ferrugineum(Copper pod tree)	3095
2	Bahinia purpurea (Orchid tree)	893
3	Casia siamea	65
4	Pongamia pinnata (Pungam)	3990
5	Porasus flabelifer (Palmyrah)	18
6	Caryota urens (Fish tail palm)	9
7	Tecoma stans	26
8	Samania saman (Rain tree)	208
9	Mangifera indica (Mango)	3
10	Cocos neusifera (Coconut)	116
11	Terminalia catapa (Badam)	100
12	Ficus religiosa (Peepal)	10
13	Lagerstroemia speciosa (Pride of India)	20
14	Azadirachta indica (Neem)	5600
15	Polyalthia longifolia (Ashoka)	300
	Syzizium cumini (Naval)	25
	Tabebuia argentea	34
18	Acacia auriculiformis(Australian wattle)	1000
19	Eucalyptus sps	25151
	Leucaena leucocephala (Subabul)	2000
20	Tamarindus indica (Tamarind)	90
	Spthodea companulata (African tulip tree)	20
	Albizzia lebbek (Vagai)	300
	Sterculia foetida	3
24	Delonix regia (Gulmohar)	300
25	Casuarina equisetifolia	48480
20	Bamboosa sps (Bamboo)	200
-	Dalbergia sissoo	9622
28	Ailanthus excelsa	102
30	Glaricidia maculata	102
31	Kaya Malia dubia (Malai yambu)	103
32	Melia dubia (Malai vembu)	500
	Swietenia mahagoni	223
	Tectona grandis (Teak)	48
-	Callophyllum innophyllum	32
	Terminalia arjuna	60
37	Singapore cherry	316
38	Millingtonia hortensis (Tree jasmine)	60
39	Madhuca latifolia (Iluppai)	10
40	Ficus bengalensis (Banyan)	3
41	Mimosops elengi (Makilam)	10
42	Cassia fistula (Golden shower)	10
43	Achrus sapota (Sapota)	10
44	Phyllanthus emblica (Amla)	10
	Tota	al 103304

CAPTIVE POWER PLANT


SL.N	Name of the Tree	No.of Trees
о		
1	Peltophorum ferrugineum(Copper pod tree)	2200
2	Bahinia purpurea (Orchid tree)	264
3	Pongamia pinnata (Pungam)	1621
4	Samania saman (Rain tree)	100
5	Terminalia catapa (Badam)	60
6	Ficus religiosa (Peepal)	7
7	Azadirachta indica (Neem)	4828
8	Polyalthia longifolia (Ashoka)	24
9	Syzizium cumini (Naval)	15
10	Acacia auriculiformis(Australian wattle)	318
11	Eucalyptus sps	10100
12	Leucaena leucocephala (Subabul)	1164
13	Tamarindus indica (Tamarind)	30
14	Albizzia lebbek (Vagai)	164
15	Delonix regia (Gulmohar)	82
16	Casuarina equisetifolia	21080
17	Bamboosa sps (Bamboo)	106
18	Dalbergia sissoo	2696
19	Melia dubia (Malai vembu)	380
20	Singapore cherry	238
21	Millingtonia hortensis (Tree jasmine)	24
22	Ficus bengalensis (Banyan)	2
	Tota	l 45503





ANNEXURE X

OCCUPATIONAL HEALTH AND SAFETY REPORT

OCCUPATIONAL HEALTH CENTRE

Tamil Nadu Newsprint and Papers Limited (TNPL) take great care of health of its employees and their dependants. Various schemes in vogue stand a testimony to the care and concern shown by the company towards the health of its employees and their dependants.

OCCUPATIONAL HEALTH CENTRE (OHC):-

TNPL has an Occupational Health Centre manned by qualified and experienced 5 Medical Officers, paramedical staff of 3 nurses, 2 pharmacists, one ANM, 2 male attenders, 3 female attenders and 10 Ambulance drivers.

The scope of the TNPL Occupational Health Centre includes Preventing occupational hazards at work, protecting workers against hazards at work, help in adapting work and the work environment to the capabilities of the worker, promoting the physical, mental and social well-being of workers and rehabilitation of accidental occupational injuries.

The main objective of the TNPL OHC are,

- To provide medical treatment and support in case of an emergency illness or accident.
- To monitor, manage and modify any adverse health effects which may occur at the workplace.
- To promote good health at the workplace.
- To plan and execute health education and awareness programmes for employees.

The major activities at TNPL are,

- Medical surveillance through measures such as periodical medical check-ups.
- Pre-employment medical check-ups.
- Medical treatment for illness and accidents.
- Conducting health education programmes.
- Providing first aid and other related training to the employees.
- Promoting health awareness and wellness measures among employees.

The OHC renders free Medical treatment and guidance to the employees and their family members. An Amount of Rs. 13.00 lakhs per annum is spent towards medicines. Apart from the above facility, Specialists from various hospitals visit OHC on Sundays. Ambulance facility is extended to the employees to provide emergency treatment. TNPL conducts medical camp every month to attend to the health needs of the neighborhood population. Special medical camps in various specialties are conducted once in 3 months.

MEDICAL EQUIPMENTS:

MEDICAL EQUIPMENTS:

Oxygenator:

Oxygenator is equipment which supplies pure oxygen from the normal atmospheric air. It works on 230v AC power. It is useful equipment for those patients suffering from Asthma, other Bronchial diseases. It's a good replacement for the oxygen cylinders. It need not be refilled and the same is maintained well.

T.N.P.L. Occupational Health Centre has an latest up to date model of Oxygenator, which is used for patients with Respiratory Difficulty.

Nebulizer:

Nebulizers are commonly used for treatment of cystic fibrosis, asthma, COPD and other respiratory diseases. Nebulizers use oxygen, compressed air or ultrasonic power to break up medical solutions and suspensions into small aerosol droplets that can be directly inhaled from the mouthpiece of the device.

T.N.P.L. Occupational Health centre has 2 latest versions of Nebulizers which render great service in treating Respiratory problems.

Suction Apparatus:

Suction Apparatus is a device for removing liquids or gases by suction, especially an instrument that uses suction to remove substances, such as mucus or serum, from a body cavity. It is used to create a partial vacuum. A suction machine helps to remove secretions and mucus from the airways. In addition, a suction machine may be needed when a patient has moist cough, or unable to effectively clear secretions from the throat, or are having difficulty in breathing or feel that they cannot get enough air.

The Occupational Health Centre is well equipped with 2 Suction Apparatus to handle any kind of emergencies.

Electro Cardiogram Machine:

ECG is used to measure the rate and regularity of heartbeats as well as the size and position of the chambers, the presence of any damage to the heart, and the effects of drugs or devices used to regulate the heart.

The Occupational Health Centre in T.N.P.L. has 2 latest model Electro Cardiogram Machines, which helps immensely in the early detection of Cardiac Diseases among the employees and their families.

Microscope:

Traction Apparatus:

Traction is applied to the cervical or lumber spine through harnesses fastened to the head or pelvic area. This widens the inter-vertebral spaces which relieves nerve root compression by the inter-vertebral discs. The compression of the nerve roots causes sensations of pain, burning, tingling in the neck, shoulders and arms, or in the back, buttocks, legs and feet. Traction force is determined by the patient's tolerance.

T.N.P.L. OHC has an Electronic Traction apparatus that is used to treat muscular

A microscope is an instrument used to see objects that are too small for the naked eye. This is an optical instrument containing one or more lenses producing an enlarged image of a sample placed in the focal plane. A latest model Microscope is used in the

T.N.P.L. OHC, for various sample identifications.

Ophthalmoscope:

Ophthalmoscopy (fundscopy or fundoscopy) is a test that allows a health professional to see inside the fundus of the eye and other structures using an ophthalmoscope (funduscope). It is done as part of an eye examination and this is used as a part of a routine physical examination It is crucial in determining the health of the retina and the vitreous humor.

The Occupational Health Centre has an Ophthalmoscope that is used in early detection of Diseases like Hypertension and Diabetes Mellitus.

Otoscope:

Automated External Defibrillator (AED):

A Defibrillator is a device that gives a high energy electric shock to the heart of the patient who is in Cardiac arrest. This high energy shock is called defibrillation and it's an essential part in trying to save the life of the patient, who is in Cardiac Arrest.

Ambulance:

TNPL Occupational Health Centre has 3 state of the art Ambulance vehicles which render yeoman service to the working community for transportation of sick and injured persons for treatment. An Otoscope or auriscope is a medical device which is used to look into the ears. Health care provides use otoscopes to screen for illness during regular check-ups and also for investigating the symptoms involving the ears. With an otoscope, it is possible to see the outer ear and middle ear. The Otoscope in the Occupational Health Centre is used in ailments like, Foregin Body in Ear etc.

Cyclotron:

Medicine Storage room:

The OHC has a well stocked Medicine Storage room.

A dedicated team of Doctors, staff nurses, pharmacists and paramedical staff, ensure the efficient and correct, timely health management and treatment is provided at the T.N.P.L. Occupational Health Centre, round the clock. A Cyclotron is a type of particle accelerator. It is used in blood samples preparations.

TNPL Occupational Health Centre has to its credit a wide range of Drugs, Suture materials, emergency medicines (including anti-venom) for managing any kind Industrial Accidents, and other medicines for Clinical Emergencies and regular Outpatient Treatment.

SPECIALIST DOCTORS VISIT TO TNPL OCCUPATIONAL HEALTH CENTRE:

For the benefit of TNPL Employees and their families, every Sunday forenoon a Specialist Doctor visits the Premise of Occupational Health Centre. The TNPL Employees and their families avail this opportunity to have their health examined. The names and their field of specialist are furnished below:

01. Dr. P. Ramesh, M.S.	-	Ophthalmic Surgeon
02. Dr. D.M.T. Saravanan, MBBS, MRCP (UK).	-	Cardiologist
03. Dr. R. Karuppaiah, M.S.	-	Orthopaedic Surgeon
04. Dr. K. Ramachandran, B.D.S.	-	Dental Surgeon
05. Dr. D. Gurusamy Nachimuthu, M.S.	-	Orthopaedic Surgeon
06. Dr. S. Kiruthika, MBBS, DDVL.	-	Dermatologist

07. Dr. V. Shankar, M.D.D.M.	-	Gastro Entero Logist
08. Dr. S. Shankar, M.S.	-	General Surgeon
09. Dr. G. Sathish, M.S.	-	Orthopaedic Surgeon
10. Dr. K.S. Murugesan, D.D.	-	Dermatologist
11. Dr. C. Balakrishnan, M.D.	-	General Physician
12. Dr. R. Hariprasad, M.D.	-	Pulmonologist
14.Dr.K.Madheswaran,M.Ch (Neuro)		- Neuro Surgeon

Monthly Free Rural Medical Camps & Health Awareness:

The most important reason why the development of rural life in India is excessively slow is because of lack of education which further impacts every simple aspect of life. The medical know-how of the rural people is almost missing. **Medical awareness** is very important for the overall **development of the weaker and socially, educationally, and economically backward sections of the society.**

We in Tamilnadu Newsprint and Papers Limited are aware, that for a prosperous country, the villages must be kept healthy. Each one needs to be socially aware and educated to have knowledge of various kinds of diseases and that a doctor needs to be consulted whenever he undergoes any kind of health problem rather than practice anything else. The backward class people are not so affluent that they can afford doctors for every simple disease condition.

The significance of medical camps is felt here. Medical camps are instituted not only to provide free medical service and checkup to the rural population, but they also focus on issues related to hygienic conditions of rural living, awareness of mothers and children who the most vulnerable to diseases. Awareness is imparted on how to live smartly.

Diseases are categorized and explained to the village folk telling them more about the health conditions that can be treated at home the ways in which they can be treated, diseases that need Doctor's prescription, diseases that require Doctor's care for a longer period of time, and diseases that require hospitalization immediately. The rural population tends to get panicked about any health hazards because they are not aware of the pros and cons of those.

They get emotionally disturbed about it easily. India is known for its poverty and depression because of health problems which is essentially due to lack of medical awareness.

Keeping this in mind, for the past Twenty Four Years, Doctors from the T.N.P.L. Occupational Health Centre visit the nearby villages every month and conduct Free, comprehensive, Health Awareness & Treatment camps. The villages that are benefited are Onavakkalmedu,

Nalliyampalayam, Sottaiyur, Kandhasamipalayam, Nanaparappu, Moolimangalam, Pazhamapuram, Masagoundanpudur, Kurrukupalayam. So far 292 Free Rural Medical camps have been conducted by TNPL.

In Rural Camps, the deficiencies like Acid Peptic Disease, Impetigo, Low Back Ache, Myalgia, Upper Respiratory Infection, Worm Infection, AGE, Head Ache, Pyrexia unknown Origin, Migraine, Blood Pressure and General cases are treated and medicines at free of cost are also provided.

The approach towards health is now changing from cure to prevention. The engineering approach is to ensure safer processes, an integrated systems approach and better occupational environment, whereas the medical approach emphasizes identifying the health risks and their prevention of occupational diseases.

TNPL OHC is well equipped and updated with the latest medical technology in order to give efficient and comprehensive health care to the Working Community.

MASTER HEALTH CHECK-UP

Ever year, all the permanent employees who have completed 40 years, 45 years, 50 years, 55 years and 59 years of age are sponsored for a comprehensive Master Health check-up by the management. For this year 2023-24, we have arranged Master Health check-up at Royal Care Super Speciality Hospital, Coimbatore at the rate of Rs.3,500/- for male employee and Rs.5,000/- for female employee through tender processing. The employee attended details from **01.10.2023 to 31.03.2024** for Master Health check-up is detailed below:

Category of Age	No of employe	ees attended
	Male	Female
40 yrs	57	3
45 yrs	19	1
50 yrs	27	3
52 yrs	83	4
54 yrs	88	1
56 yrs	33	-
59 yrs	3	-
Total	310	12

EYE TEST:

Employees who are operating heavy vehicles viz., equipment operators and drivers have undergone eye test.

Distant Vision, near vision, color vision and fundal examination were performed. An amount of Rs.58,500/- was incurred towards Eye Test in the year, 2023 on 09.03.2023.

EYE TEST REPORT:

	Total No of Personnel tested	Normal	Abnormal
Regular employees and Contract Workmen	234	234	-

AUDIOMETRY TEST:

Audiometry test was done to employees, those who were exposed to high noise levels. An amount of Rs.35,750/- was incurred for Audiometry Test in the year, 2023 on 09.06.2023 .

The summary of expenditure incurred for the health care of the employees is given below:

PURE TONE AUDIOGRAM REPORT

No. of Employees Tested	Normal Audiogram	Abnormal Audiogram
143	143	NIL

All employees who are exposed to noise in the work environment are provided with good quality **ear muffs** to protect their hearing capacity.

PRE-EMPLOYMENT MEDICAL EXAMINATION:

The candidates, who are selected for jobs in TNPL, undergo Pre-Employment Medical Tests as advised by the Occupational Health Centre, TNPL.

They are advised to undergo the following Medical Tests in reputed laboratories.

- 1. Blood Tests Urea, Creatinine, Blood Sugar, Cholesterol.
- 2. Urine Tests Urine Routine, Specific Gravity, Urine Albumin, Urine Sugar.
- 3. Chest X-ray.
- 4. Electro Cardio Gram (ECG).
- 5. Pulmonary Function Test (PFT).
- 6. Pure Tone Audiogram.
- 7. Ophthalmic Evaluation.
- 8. E.N.T Surgeon's Opinion.
- 9. Ophthalmic Surgeon's Opinion.
- 10. General Physician's Opinion.

OINDUSTRIAL ACCIDENT:

When employees sustain injuries while on duty, Company bears the entire medical expenses. For the period, October, 2023 to March, 2024 an amount of Rs.7.38 lakhs was incurred towards entire medical expenses by the company.

MEDICAL ASSISTANCE UNDER SERIOUS AILMENTS SCHEME:

Company pays the entire hospitalization charges for employees, who suffer from the following Serious Ailments:

- 1. Heart Ailment
- 2. Cancer
- 3. Kidney Transplantation
- 4. Paralysis
- 5. Leprosy
- 6. Tuberculosis
- 7. Brain Surgery
- 8. Acute Pancreatitis
- 9. Liver disease

The company has a list of approved hospitals in major cities, where is employees can take treatment for the above 9 Serious Ailments.

180 days of Special Leave is sanctioned to those employees, who suffer from any one of the above Serious Ailments. The employees who have exhausted the Special Leave are sanctioned additional 180 days of Special Leave on case to case basis depending upon the severity of the ailments. The expense incurred towards the above medical facility for the period, October, 2023 to March, 2024 was Rs.55.78 lakhs.

SPECIAL MEDICAL ASSISTANCE SCHEME:

If the employee's medical expenditure is more than Rs.3,000/- and that there is a minimum period of 2 days of hospitalization, approximately 50% of the medical expenses are borne by the company for the medical expenses incurred for the employees and their dependants. The expenses incurred towards the above medical facility for the period October, 2023 to March, 2024 was Rs.120.22 lakhs.

ANNEXURE XI

FIRE PROTECTION FACILITIES

1. FIRE FIGHTING FACILITIES AVAILABLE IN TNPL MAIN SITE AS ON 31.03.2024

SI.		51.05.2024
No.	PARTICULARS	CAPACITY
1	Fire Tender vehicles (FTV)	Two Numbers of Fire Tender Vehicles are available. FTV No.1 & 2 Tank Capacities are 4500 Ltrs and 5000 Ltrs respectively with foam making specialities.
2	Pumps (Effluent Treated Water)	3 Nos (All Rated 150kw/1500 rpm/720m ³ /hr) Two pumps are in continouse operation for hydrant lines only.
		3 Nos of Diesel Engines 1. No.503, 155 kw
3	Standby Diesel Operated Fire Water Pumps	2. No.506, 113 kw / 410 m ³ / hr / Bhp 231 / rpm 1500
		3. No.507 113 kw / 410 m ³ / hr / Bhp 231 / rpm 1500
4	Standby Electrical Motor Operated Jockey Pumps	1 No. 37 kw / 240 m ³ / hr / rpm 2850
5	Diesel Driven Booster Pump	273m ³ /hr @ 88 m/133 HP / 1800 rpm
6	Standby Electrical Motor Operated Pump No.1	273m ³ /hr @ 88 m/120 HP / 90 kw / 2980 rpm
7	Standby Electrical Motor Operated Pump No.2	273m ³ /hr @ 88 m/120 HP / 90 kw / 2980 rpm
8	Electrical Motor Operated Jockey Pump	273m³/hr @ 88 m/ 11KW / 2900 rpm
9	Boilers 1 ,2 ,3 & 4 Booster Pump	273m ³ /hr @ 88 m/ 15KW / 2900 rpm
10	Boiler No. 5 Booster Pump	273m ³ /hr @ 88 m/ 11KW / 2900 rpm
11	Boilers 6 & 7 Booster Pump	273m ³ /hr @ 88 m/ 22KW / 2955 rpm
12	Recovery Boiler area Booster Pump(Electrical Motor)	273m ³ /hr @ 88 m/ 45 KW / 2900 rpm
13	Coal Yard Booster Pump	273m ³ /hr @ 88 m/ 22KW / 2955 rpm
14	Electrical Driven Fire Pump at Cement Plant	273m ³ /hr @ 88 m/ 45 KW / 2900 rpm
15	Total nos. of Fire Hydrants and Line pressure	674 NOS. and 4.8 Kg / cm ² to 7 Kg/cm ²
16	Fire Extinguishers (Various types)	1670
17	Fire buckets and Stands	Fire Buckets Stand - 246 Buckets filled with sand and water - 1108
		Reservoir - I - 174000 M ³
		Reservoir - III - 650000 M ³
18	Water Avalability in the Tanks for Fire	Reservoir - IV - 650000 M ³
ΠŎ	Fighting	Reservoir - V - 180000 M ³
		Calarifloculator - I - 8150 M ³
		Calarifloculator - II - 11400 M ³
19	Fire Fighting Crew	Fire Fighting Crew is Available Round the Clock
20	Reserve Personnel for Fire Fighting	Plant Personnel are Trained in Fire Fighting on Regular Basis

2. STATUS OF FIRE EQUIPMENTS AS ON 31.03.2024

SLNO	EXTINGUSHER NAME	MAIN SITE	OFF SITE & WIND FARM	TOTAL	REMARKS
1	WATER CO₂ 9 LTR	311	62	373	
2	FOAM (AFFF) 9 LTR	204	15	219	
3	FOAM 160 LTR (AFFF)	9	0	9	
4	DCP 6 KG	419	50	469	
5	DCP 9 KG	184	10	194	
6	CO ₂ 2 KG	17	0	17	
7	CO ₂ 4.5 KG	378	115	493	
8	CO₂ 6 KG	2	0	2	
9	CO ₂ 6.5 KG	6	0	6	
10	CO ₂ 6.8 KG	8	0	8	
11	CO₂ 9 KG	7	0	7	
12	CO ₂ 22.5 KG	25	0	25	
13	CLEAN AGENT - 1 KG	19	0	19	
14	CLEAN AGENT - 2 KG	66	0	66	
15	ABC 02 KG	15	0	15	
	TOTAL	1670	252	1922	

(A) FIRST AID FIRE FIGHTING EQUIPMENTS

(B) OTHER FIRE FIGHTING APPLIANCES

SLNO	EXTINGUSHER NAME	MAIN SITE	OFF SITE & WIND FARM	TOTAL	REMARKS
1	FIRE BUCKET STAND	246	24	270	
2	FIRE BUCKETS	1108	122	1230	
3	HOSE BOXES	213	8	221	
4	FIRE HOSE - 30 MTRS	82	25	107	
5	FIRE HOSE - 15 MTRS	172	18	190	
6	FIRE HOSE - 7.5 MTRS	83	10	93	
7	BRANCH PIPE /NOZZLE	206	16	222	
	HYDRANT POINTS				
	SINGLE HYD 306+10+05+12=333				
	DOUBLE HYD 65				
8	IS HYDRANTS - 50	674	0	674	
0	FE HYDRANTS - 115	074	U	0/4	
	COAL SPRIN.+ SH - 4+4+8+63 = 79				
	MONITOR HYD 08+02+02= 12				
	CEMENT PLANT SH - 20				
	TOTAL	2784	223	3007	

SI. No.	DESCRIPTION	FIRE TENDER NO 1	FIRE TENDER NO 2
1	AUTO SL.NO	405	442
2	REGN.NO.	TN47 D 8310	TN 47 AT 9389
3	MODEL	1996	2016
4	ТҮРЕ	SL54	1616 IL
5	МАКЕ	ASHOK LEYLAND / COMET	ASHOK LEYLAND
6	РИМР	SHRI GANESH FIRE EQUIPMENT (P) LTD., NEW DELHI. C.E MARK NO: CE 98/37.559.00, PRODUCT: FIRE PUMP EN-1028:1&2 SLNO. 475, MODEL NO. CNMHL-2230, YEAR 2013 PUMP CAPACITY:2250LPM, RPM:3000	FIRE FLY PUMP. CAPACITY 2250 LPM AT 7 KG/CM2 (NORMAL PRESSURE) AND 250 LPM AT 30 KG/CM2 (HIGH PRESSURE). TYPE - CENTERFUGAL HIGH PRESSURE AND LOW PRESSURE. MATERIAL - GUN METAL
7	BUILDER	SAKTHI FIRE EQUIPMENT , CHENNAI	M/S AAREL INDUSTRIES , NO:52 SECTOR "A" SANWER ROAD, INDORE.
8	DIESEL CAPACITY	200 LTRS	200 LTRS
9	TANK CAPACITY	4500 LTRS	5000 LTRS
10	FC DUE	31.03.2025	07.06.2024
	-		-

3. FIRE TENDER DETAILS AS ON 31.03.2024

4. FIRE CALLS ATTENDED

		Т	NPL CALLS		0	UT SIDE CALLS			
SL. NO	YEAR	MILL AREA	OUT SIDE MILL AREA	TOTAL	OUT SIDE CALLS	SPECIAL ASSISTANCE	TOTAL	TOTAL CALLS ATTENDED	
1	1996	34	5	39	7	0	7	46	
2	1997	40	30	70	4	0	4	74	
3	1998	29	19	48	5	1	6	54	
4	1999	36	22	58	10	2	12	70	
5	2000	13	1	14	14	2	16	30	
6	2001	28	3	31	7	0	7	38	
7	2002	23	-	23	11	2	13	36	
8	2003	13	-	13	2	0	2	15	
9	2004	12	2	14	2	0	2	16	
10	2005	6	6	12	3	0	3	15	
11	2006	16	-	16	6	1	7	23	
12	2007	21	2	23	3	2	5	28	
13	2008	23	-	23	5	0	5	28	
14	2009	29	2	31	7	0	7	38	
15	2010	21	-	21	5	0	5	26	
16	2011	21	4	25	5	0	5	30	
17	2012	51	1	52	12	0	12	64	
18	2013	21	4	25	7	1	8	33	
19	2014	30	4	34	6	0	6	40	
20	2015	23	5	28	7	3	10	38	
21	2016	39	3	42	5	1	6	48	
22	2017	24	7	31	16	4	20	51	
23	2018	27	2	29	4	0	4	33	
24	2019	26	5	31	1	2	3	34	
25	2020	19	7	26	2	0	2	28	
26	2021	9	2	11	4	1	5	16	
27	2022	14	2	16	5	3	8	24	
28	2023	22	5	27	4	1	5	32	
29	2024	3	1	4	3	0	3	7	
		673	144	817	172	26	198	1015	

5. MAIN SITE - PLANT WISE FIRE EXTINGUISHERS PLACEMENT DETAILS AS ON 31.03.2024

SL. NO	DEPARTMENTS	W/ CO₂	FOA	AM	DC	P				CO ₂					=ΔΝ			I FIR						4 1
	DEPARTMENTS	CO.																FIRE		l	HOSES			Ð
NO		009												AG	ENT	ပို့စ	₹	BUCKETS		l S X				Ň
	DEI/IIIIEIIIO	09	09	150	06	09			6	6.5	6.8	09	22.5			ABC (KG	TOTAL			HOSE BOX	30	15	7.5	Nozzle
		LTR	LTR	LTR	KG	KG	02 KG	4.5 KG	KG	KG	KG	KG	KG	01 KG	02 KG	∢	E E	STAND	NOS		MTR	MTR	MTR	z
4							0	0						0	0	0	0	0	0	0				0
	FIRE OFFICE / SECURITY OFFICE	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0
2	ADMIN / IT BUILDINGS	9	0	0	9	0	0	12	0	1	0	0	1	8	11	0	51	2	9	2	2	1	1	2
3	CANTEEN / TELE EX/TIME OFFICE	1	3	0	6	1	0	7	0	0	0	0	0	0	2	0	20	2	8	0	0	0	0	0
4	WTP	0	5	0	9	6	1	8	0	0	0	1	0	0	0	0	30	3	12	4	0	6	2	4
5	WOOD YARD CHIPPER HOUSE SILO	8	3	0	12	1	0	6	0	0	0	0	0	0	1	0	31	0	0	11	1	17	3	11
-	MBP MILL	0	2	0	3	1	0	0	0	0	0	0	1	0	0	0	7	1	4	0	0	0	0	0
0		-		-	-		-	-	-	-	-	-		-	-	-	-			-	-	-	-	-
1	HARD WOOD PULP MILL	2	5	0	10	6	0	7	0	0	0	0	1	0	1	0	32	4	20	6	3	4	4	6
8	OLD WETLAB / PULP FEEDING	3	0	0	2	1	0	2	0	0	0	0	0	0	0	0	8	1	4	1	0	1	1	1
9	WORKS OFFICE / LAB	3	0	0	3	0	5	7	0	0	0	0	1	2	8	0	29	1	4	1	0	2	0	1
10	PAPER MACHINE III	24	23	1	38	15	0	38	0	0	0	0	3	0	9	0	151	18	85	28	14	19	7	28
11	PAPER MACHINE II	15	13	1	10	12	0	16	0	1	0	0	3	0	2	0	73	13	62	8	4	4	1	8
	PAPER MACHINE I	29	19	2	11	16	0	19	1	1	4	0	1	0	3	0	106	15	75	12	12	9	3	8
		-					-					-		-	-	-		-				-		-
	CAP GODOWN I & II	2	0	0	2	0	0	3	0	0	0	0	0	0	1	0	8	0	0	4	0	4	4	4
	PAPER GODOWN "A" & NEW F/H	24	0	0	7	0	0	4	0	0	0	0	0	0	0	0	35	3	12	4	1	4	1	4
15	OLD FIN. HOUSE / EMPL. CUTTER	11	0	0	1	1	1	3	0	0	0	0	0	0	0	0	17	3	14	3	1	2	1	3
16	WILE CUTTER & BIELOMATIC I & II	9	0	0	3	0	0	6	0	1	0	0	0	0	0	0	19	2	8	1	0	1	1	1
17	PASABAN CUTTER	2	1	0	5	0	0	4	0	0	0	0	0	0	0	0	12	0	0	2	0	2	2	2
18	ASRS GODOWN & II / SHRINK	10	2	0	9	0	0	4	0	0	0	0	0	0	1	0	26	4	17	4	0	5	2	4
-		-		-	-	-	-		-	-		-	-	-		-					-			10
	OLD REEL GODOWN I	14	0	0	7	0	0	4	0	0	0	0	0	0	0	0	25	8	39	10	5	15	2	
20	NEW REEL GODOWN II	8	0	0	1	2	0	3	0	0	0	0	0	0	0	0	14	2	10	2	0	2	2	2
21	MARKETING / OS OFFICE	5	0	0	1	0	0	2	0	0	0	0	0	2	1	0	11	3	15	3	1	2	1	3
22	PROJECT GATE	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	2	1	4	1	1	0	0	1
23	GENERAL STORES	13	4	0	6	2	0	9	0	0	0	0	0	1	2	0	37	2	9	1	1	0	0	1
24	KRAFT PAPER GODOWN I & II	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	2	8	1	1	0	0	1
		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-					-	-	0
25	CENTRAL / ELE WORK SHOP	2	2	0	4	1	1	2	0	0	0	0	0	0	0	0	12	2	9	0	0	0	0	0
26	SAFETY / CIVIL OFFICE	6	1	0	1	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0
27	BOILER I TO 4 & TG 1 TO 3	1	24	1	26	22	0	20	0	0	1	0	3	1	0	0	99	23	113	10	2	6	8	10
28	BOILER 5 / TG 4 & 5	0	7	0	16	5	0	9	0	0	0	0	3	0	1	0	41	9	29	4	2	2	0	4
29	BOILER VI & VII / TG VI	4	11	1	17	11	0	19	0	0	2	0	2	0	0	0	67	5	22	11	5	4	0	9
30	NEW SRP III	1	12	1	4	14	0	9	0	0	0	0	1	1	3	0	46	6	27	8	1	6	6	8
	LIME KILN 1 & 2 / FURNACE OIL	0	4	1	4	2	0	4	0	0	0	0	0	0	0	0	15	3	13	2	0	2	0	2
		-					-		-	-	-	-	-	-	-	-	-	-			-		-	
32	02 GENERATION PLANT	0	0	0	16	1	1	4	0	0	0	0	0	0	0	0	22	6	24	1	1	0	0	1
33	AUTO SECTION	1	3	0	5	1	0	3	0	0	0	0	0	0	1	0	14	4	18	0	0	0	0	0
	DIESEL BUNK	0	2	1	0	3	0	0	0	0	0	0	1	0	0	0	7	2	8	1	1	0	0	1
35	ETP / MULTI PURPOSE GODOWN	1	3	0	11	5	1	8	0	0	0	0	0	0	0	0	29	4	17	2	0	4	0	2
36	SCRAP YARD	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0	4	4	30	3	0	3	1	3
37	COAL YARD WEIGH BRIDGE	1	1	0	8	1	0	6	0	0	0	1	0	0	0	0	18	1	4	4	1	3	4	4
-	WASTE PAPER GODOWN / S/GATE	11	1	0	5	2	0	5	0	0	0	0	0	0	0	0	24	6	28	5	4	1	4	5
				-	-		-	-	-	-	-	-		-		-		-		-		•	-	5
39	SRP I & II - CAUSTICIZER PLANT	0	5	0	12	7	2	11	0	0	0	1	1	0	0	0	39	8	35	1	1	0	0	1
40	OLD PULP MILL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5	1	1	0	0	1
41	CBP II	1	5	0	7	6	0	6	0	0	1	0	1	0	0	0	27	2	8	2	1	1	1	2
42	CBP III / ECF	0	5	0	13	7	0	11	1	0	0	1	1	0	1	0	40	4	17	6	1	5	3	6
43	CLO2 PLANT	0	3	0	9	4	0	7	0	0	0	1	0	0	1	0	25	4	17	4	0	4	0	4
	WET LAP II & III	5	0	0	1	2	0	3	0	0	0	1	0	0	0	0	12	0	0	1	1	0	0	
									-									-	-			-	-	1
	DE INKING PLANT	3	6	0	9	5	0	8	0	2	0	0	1	0	1	0	35	3	15	6	0	6	6	6
	DIP SLUDGE SCREW PRESS	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0
47	DIP PULPER GODOWN	10	0	0	2	1	0	2	0	0	0	0	0	0	0	0	15	1	5	5	1	4	2	5
48	BACK WATER PLANT	1	1	0	5	1	0	5	0	0	0	1	0	0	0	0	14	1	5	0	0	0	0	0
	BAGGASE YARD OLD / NEW	20	4	0	6	9	0	9	0	0	0	0	0	0	0	0	48	3	12	13	8	9	5	13
	BIO GAS PLANT / WEIGH BRIDGE	0		0	6	0	0		-	0	-	-	-	-	1	-	10	1	5	0	0	0	0	0
		-	0			-	-	3	0	-	0	0	0	0		0			-	-	-	-	-	-
51	BAGASSE GATE	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	2	1	5	0	0	0	0	0
L	TOTAL	269	182	9	346	175	12	318	2	6	8	7	25	16	52	0	1427	194	890	199	78	160	78	193

6. COLONY AREA / OUT POST FIRE EXTINGUISHERS PLACEMENT DETAILS AS ON 31.03.2024

SL.		W/ CO ₂	FO	АМ	D	CP				CO ₂				CLI AG	EAN ENT 02	ء 102	AL	FIF BUC		Вох	I	HOSES	;	ozzle
NO	DEPARTMENTS	09 LTR	09 LTR	160L TR	06K G	09 KG	02 KG	4.5 KG	06 KG	6.5 KG	6.8 KG	09 KG	22.5 KG			ABC (τοται	Stand	Bucke ts	Hose	30 MTR	15 MTR	7.5 MTR	N oz:
									COL		AREA	•												
	BROUGHT FORWARD 269 182 9 346 175 12 318 2 6 8 7 25											16	52	0	1427	194	890	199	78	160	78	193		
1	TNPL MATRIC SCHOOL / BUS	4	0	0	4	0	0	4	0	0	0	0	0	0	4	15	31	2	8	0	0	0	0	0
2	TNPL PUBLIC SCHOOL	3	0	0	2	0	0	3	0	0	0	0	0	1	1	0	10	2	8	0	0	0	0	0
3	TNPL PRIMARY SCHOOL	3	0	0	1	0	0	2	0	0	0	0	0	0	3	0	9	1	4	0	0	0	0	0
4	STADIUM / SHOOTING RANGE	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	2	2	8	0	0	0	0	0
5	COLONY MAINTENANCE	0	1	0	0	1	0	1	0	0	0	0	0	0	0	0	3	1	4	0	0	0	0	0
6	FAMC	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	3	1	4	0	0	0	0	0
7	CAR SHED	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	4	2	8	0	0	0	0	0
8	RECREATION	2	0	0	1	0	0	1	0	0	0	0	0	0	0	0	4	1	4	0	0	0	0	0
9	STAFF CLUBS	2	0	0	1	0	0	1	0	0	0	0	0	0	0	0	4	2	8	0	0	0	0	0
10	COLONY GATE / TEMPLE	2	0	0	1	0	0	1	0	0	0	0	0	0	0	0	4	1	5	0	0	0	0	0
11	COMMUNITY HALL	2	1	0	2	0	0	2	0	0	0	0	0	0	0	0	7	2	8	0	0	0	0	0
12	HRD HALL / HORTICULTURE	2	0	0	2	0	0	2	0	0	0	0	0	0	0	0	6	2	8	0	0	0	0	0
13	CO-OP- STORE/ GAS GODOWN	0	0	0	0	2	0	2	0	0	0	0	0	0	0	0	4	2	8	0	0	0	0	0
14	MICRO LAB	2	0	0	1	0	3	0	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	0
15	GUEST HOUSE	0	1	0	1	1	0	2	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0
16	INDUSTRIAL TRAINING INSTITUTE	6	2	0	6	1	0	6	0	0	0	0	0	0	2	0	23	8	32	0	0	0	0	0
	TOTAL	299	187	9	373	180	16	346	2	6	8	7	25	17	62	15	1552	223	1007	199	78	160	78	193
									<u> </u>	IT PO	<u>ST</u>													
1	BR #3 (NEW RESERVOIR)	0	1	0	1	1	0	1	0	0	0	0	0	0	0	0	4	2	8	0	0	0	0	0
2	CPRC	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	3	3	13	0	0	0	0	0
3	INTAKE WELL	0	2	0	7	0	0	5	0	0	0	0	0	0	0	0	14	4	20	0	0	0	0	0
4	TEWLIS PUMP HOUSE	0	1	0	1	1	0	1	0	0	0	0	0	0	0	0	4	1	4	0	0	0	0	0
5	CEMENT PLANT	11	13	0	36	2	0	25	0	0	0	0	0	2	4	0	93	13	56	14	4	12	5	13
6	BLS GODOWN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	TOTAL	12	17	0	46	4	1	32	0	0	0	0	0	2	4	0	118	23	101	14	4	12	5	13

ANNEXURE XII

COMPLIANCE TO CREP RECOMMENDATIONS

STATUS OF IMPLEMENTATION OF CREP ACTION POINTS AS EVOLVED BY CPCB

RESPONSIBILITY	IMPLEMENTATION SCHEDULE		STA	TUS OF CON	IPLIAN	CE			
1.DISCHARGE OF AOX kg/tonne of paper	AOX 1.5 Kg/tonne of paper within 2 years AOX 1.0 Kg/tonne of paper	The unit is maintaining AOx level in the treated effluent is maintaining below 0.1kg/T of product during the review period.							
	within 5 years		AC	DX LEVEL – Oct'	23 to Ma	n r'2 4			
					A	NOX	1		
			S.NO	MONTH	PPM	KG/T	1		
			1	Oct-23	2.8	0.07			
			2	Nov-23	2.1	0.04			
			3	Dec-23	3.4	0.11			
			4	Jan-24	3.2	0.08			
			5	Feb-24	4.1	0.1			
			6	Mar-24	4.5	0.09			
2. Installation of lime	Within 4 years			ERAGE	3.35	0.08			
kiln 3. Waste water discharge cu. M / tonne of paper	Less than 140 Cu. M / tonne of paper within 2 years. Less than 120 Cu. M / tonne in 4 years for units installed before 1992. Less than 100 Cu. M / tonne of paper per units installed after 1992.	complete now both The ave productio	ed during <u>lime kilı</u> rage was on is ma	. Installation o 2008 as part of ns are under ope ste water disch aintained arour period Apr'2023	f Mill Deveration. Aarge peorderation Marge Peorderation Natural Peorderation Peorderation Peorderation Peorder And Content Peorderation Peorderatio	velopment r ton of N ³ /Mt of	Plant paper		
4. Odour control by burning the reduced sulfur emissions in the boiler/lime-kiln	system within 4 years.	 Interview of the second system of the							
5. Utilization of treated effluent for irrigation	Utilization of treated effluent for irrigation wherever possible	is fully u Captive p	tilized to plantation	ed effluent disch o irrigate lands, n and addition to l premises.	covered	l under TE	WLIS,		
6. Color removal from the effluent	Indian Paper Manufacturers Association to take up project with Central Pulp & Paper Research Institute	project w The unit colour in outlay of of Oxyge 06 th Aug expendit Rs.20,000 final tre	with Cen has imp the trea Rs.400 l n feed p ust 2010 ure will b D per day ated eff	ufacturers Assoc tral Pulp and P lemented tertia ated effluent by akhs (Rs.200 for olant). The un o and is in se oe about R v. In addition to luent, the ozor level in the trea	aper Res ary treat y Ozonat r Ozoniza it was co ervice. Ss. 70 lal o colour nation fu	earch Inst ment to ra ion at a c tion and R ommissiona The open kh per ann reduction i urther imp	itute. educe apital s.200 ed on rating um @ in the		

ANNEXURE XIII

COMMITMENTS MADE DURING PUBLIC HEARING

ACTION TAKEN ON PUBLIC HEARING MEETING /CONSULTATION MEETING COMMITMENTS

Public Hearing meeting was conducted for the De-inking Plant and Upgradation of Captive Co-generation plant on 18/05/2012. Public demanded various welfare measures such as provision of drinking water, dust control measures, infrastructure development, sanitation facilities. Subsequent to Public Hearing meeting, all the requests received from the eight Panchayats located around mill premises were prioritized based on the discussion with respective Panchayat President /Chairman and site inspection carried out by TNPL Officials during the Month of June '12.

Based on the above, necessary works were carried out as detailed below:

SL NO	Name of Panchayat	Nature of Request	Details of work undertaken	Value of work in Lakh₹	Current Status of work
01	Tamil Nadu Kagitha Aalai Panchayat	Provision of additional drinking water taps	11 Numbers of additional drinking water taps provided	2.10	Work completed
02	Punjai Pugalur Town Panchayat Area	Provision of drinking water pipelines	Laying of PVC pipelines for a length of 2.2 KMs	7.50	Work completed.
03	-do-	Overhead tank of drinking water supply	One Lakh Lt capacity drinking water tank has been constructed	17.00	Work completed.
04	-do-	GLR for drinking water supply from TNPL	Tank has been constructed	10.00	Work completed.
05	Athur Poolampalaya m Village Panchayat	Provision of drinking water to Thanasi goundanpudur, Thundu perumalpalayam & Ambethkar Colony	Laying of separate lines to existing three Overhead tanks located in the respective areas	20.00	Work completed.
06	Thirukaduthur ai Panchayat	Replacement of damaged drinking water pipelines for a distance of 0.5 Kms & Provision of drinking water storage tank	A 5000 Lt Sintex tank has been provided and pipelines were replaced	2.5	Work completed.

1. Drinking water supply:

SL NO	Name of Panchayat	Nature of Request	Details of work undertaken	Value of work in Lakh₹	Current Status of work
07	Kombupalaya m Panchayat	Repairing of OHT at Noyyal Village & replacement of Sintex tank at Nathamedupalayayam	OHT repaired and sintex tank was replaced.	0.80	Work completed.
08	-do-	Repairing of drinking water tank at Panchayat Primary School, Noyyal	Repairing work completed.	0.10	Work completed.
09	Punnam Panchayat Area	Provision of RCC OHT at Punnam Adidravidar School	20,000 litres capacity tank was constructed.	5.00	Work completed.

2. Sanitation Arrangement:

SL NO	Name of Panchayat	Nature of Request	Details of work undertaken	Value of work in Lakh₹	Current Status of work
01	Thottakuruchi Town Panchayat	Provision of Public Toilet at Thalavapalayam	Toilet constructed.	3.50	Work completed.
02	-do-	Provision of Public Toilet at Fishermen street at East Thavittupalayam	Toilet constructed.	3.50	Toilet constructed.
03	Kombupalayam Panchayat	Repairing of toilet at Panchayat Primary School, Noyyal	Toilet provided with new septic tank and pipelines	0.50	Work completed.
04	Nanjai Pugalur Panchayat Area	Provision of Public Toilet at Modhu Kaadu	Toilet constructed.	3.50	Toilet constructed.

3. Infrastructure and Drainage Development:

SL NO	Name of Panchayat	Nature of Request	Details of work undertaken	Value of work in Lakh₹	Current Status of work
01	Tamil Nadu Kagitha Aalai Panchayat	Class room building for Panchayat union Elementary School, Pudu Kurukku palayam	Construction of three class rooms	8.00	Work completed.
02	Thirukaduthurai Panchayat	Front shed for Ration shop	Front shed for ration shop has been provided	0.5	Work completed.
03	Punnam Panchayat Area	Construction of Ration shop at Punnam chatram	Ration shop constructed.	5.0	Work completed.
04	-do-	Provision of drainage between Palamapuram & Ponniyagoundanp udur	Drainage provided	14.25	Work completed.
05	-do-	Provision of drainages and retaining walls at Moolimangalam and Thathampalayam	Drainage provided	22.50	Work completed.
06	Kombupalayam Panchayat	Construction of compound wall at Panchayat Primary School, Noyyal	Compound wall provided	1.9	Work completed.
07	-do-	Creation of burial ground and civil amenities at Muninathapuram	Work is being taken up	1.5	Work completed.

Total cost spent towards implementation of above schemes = Rs.144.82 lakhs.

ANNEXURE XIV

CSR ACTIVITES

STATUS OF CSR ACTIVITIES CARRIED OUT DURING OCTOBER - 2023 TO APRIL - 2024

SI.No	CSR Activities Carried Out During Oct'2023 to Apr'2024	Cost incurred. Rs. in Lakhs
1	Every year, TNPL adopts 5 children to provide free education at TNPL Matriculation Higher Secondary School from Onavakkalmedu village students are studying between LKG to 12th standard.	12.92
2	Industrial Training Institute in affiliation with National Council Vocational Training (NCVT) and the Quality Council of India (QCI) is being run through TNPL Arakkodai Trust, covering four trades Viz. Instrument Mechanic, Fitter, Electrician and Welder.	36.48
3	Sponsorship for conducting sports tournaments, Sports training, State level sports tournament, will be carried out in order to promote sports activities.	1.36
4	Special Coaching Classes for X, XI & XII Students of School Situated around TNPL Unit-I.	0.66
5	TNPL organizes Special Medical Camps, Cancer screening Camps in association with leading Medical hospitals, organizing Monthly mobile camps for the benefit of the rural people in surrounding villages. Organizing Blood donation camps in association with Blood Bank Karur. Developing infrastructure facilities in the surrounding Government Hospitals. Providing Aids Appliances to the differently abled persons through District Disabled Rehabilitation and Welfare Officer (DDRWO) Karur.	7.22
6	Computer, Typewriting and Tailoring training centres have been set up to provide Career development training to unemployed youth in the neighbouring villages for enhancing employability skills / entrepreneurship skills.	3.09
7	Providing Physical Training at TNPL sports ground to the unemployed youth to take part in the Police Selection for the post of Constable and Sub-Inspector. Tiffin, Lunch, snacks, etc will be provided. Expert coaching classes are being provided during the training classes. Providing skill development Training for rural youth in association with TNPL I.T.I and Indian Overseas Bank/ Rural Self Employment Training Institute, Karur and other institutions. Sponsorship and Stipend will be provided to candidates to attend vocational training programmes and skill development programmes and Dual Training scheme at TNPL.	3.44
8	Infrastructure development works in the surrounding Municipality, Town Panchayat and Panchayat areas viz., Pugalur Municipality, Punjai Thottakurichi, and Nanjai Pugalur, Kombupalayam, Punnam, Thirukkaduthurai, Vettamangalam Panchayats.	51.45
9	Distributing Drinking water to the surrounding villagesviz. 1) Palamapuram,2)Pandipalayam,3)Tadhampalayam,4)Moolimangalam,5)Ponniagoundanpudur,6)NarippalliThottam,7)Kariyampatti,	37.72

Sl.No	CSR Activities Carried Out During Oct'2023 to Apr'2024	Cost incurred. Rs. in Lakhs			
	8) Kandasamypalayam, 9) Velliyampalayam, 10) Sullikaradu, and Chattram road.				
	11) Nanaparappu 12) Thannasigoundanputhur 13) Thunduperumal Palayam. and				
	TEWLIS Ayacut areas etc., and community development activities etc.,				
10	Providing Street light in P.Thottakurichi Town panchayat areas.	19.00			
11	Construction of new library building at Thirukkaduthurai Village.	8.40			
12	Construction of RCC Pipe Culvert at Nadu Nanaparappu village.	4.98			
13	Providing LED Street lights to Pugalur Municipality areas.	7.70			
14	Fire rescue equipment to Fire Service department, Karur.	3.50			
15	Repairing and Renovation, painting works at Koolagoundanur primary school.	1.05			
16	Construct Compound wall at Asta Tasa Puja Durgadevi Temple at Thavittupalayam.	6.00			
17	Dismantling the existing boys urinal, reconstruction the same and providing water	3.31			
17	line to girls urinal at Periyar E.V.R School, Noyyal.	3.31			
18	Construction of bath ghats at Raja vaikkal, Thirukkaduthurai colony.	2.62			
2	Providing pipe culvert and re routing the earthen drain at Ammapatti village.	1.10			
19	Construction of pipe culvert (Bridge-2 Nos) for Kannimar & Rakkayee Thottam at Moorthipalayam.	6.23			
20	Construct of Tile Roofing shed for Veeranarayanaperumal Temple at Kodumudi.	10.70			
21	Production and Supply of Tree Saplings and planting saplings in the surrounding villages.	4.51			
22	Watering of Tree saplings planted around the factory.	0.67			
	Developing greenbelt and garden in the surrounding areas and Karur Railway				
23	station. Promotion of organic manures, Developing Solid Waste Management	4.64			
	projects in the surrounding villages.				
24	Providing JCB for desiliting the cannel and cleaning bushed at Moorthipalayam to	1.29			
24	Thalavapalayam.	1.29			
25	Infrastructure works to preserve Heritage Buildings including Place of worship in	3.25			
25	Karur District.				
	GRAND TOTAL (Rs in lakhs)	243.28			

Sector	2013 -14	2014 -15	2015 -16	2016 -17	2017 -18	2018 - 19	2019 -20	2020-21	2021-22	2022-23	2023-24
Education	69	47	120	110	92	88	103	17	68	81	52
Health Care and Medical Service	10	22	67	89	33	37	136	32	139	7	7
Infrastructure Development	94	-	-	-	54	84	44	49	5	22	52
Social Development	-	193	101	230	-	70	43	75	131	145	119
Livelihood / Economic Development	109	-	-	-	25	62	10	16	3	-	-
Environment & Sanitation	26	93	66	51	33	33	14	6	2	5	11
Culture & Heritage	20	18	16	26	19	21	35	16	0.4	2	3
Soil and Water Conservation	-	-	-	-	-	10	14	8	-	-	-
Total (Rs. in Lakhs)	327	373	369	505	255	406	399	219	349	262	243
Total (Rs. in Crores)						37.06					

Enterprise Social Commitment

Table No. 2

Cost Towards Pollution Control Facilities

Parameter	Capital cost	Operating Cost Rs. Lakhs/year
	(Rs. Lakhs since 2013 EC)	
Air pollution control systems	800	325
(ESP and Chimney for the power boiler#7 under capital)		
DIP Sludge dewatering system and handling	1000	195
Water conservation and recycling for DIP	700	-
Cost incurred on Water conservation measures (118	157	-
projects)		
Online monitoring and control equipment and	123	10
instruments		
Dust suppression system for coal handling area	130	23
Air cooled condenser for conservation of water	1000	193
Greenbelt and green cover development	64	125
Safety systems installations	100	
Safety and environmental staff costs		350
Total	4074	1221

Table No. 3

Status of Environment Protection Measures Proposed During MDP

Description	Investment (Rs In Crores)	Status
White liquor oxidation plant	4.0	
Oxygen generation plant	11.0	
Bleach plant for chemical bagasse pulping lines	60.0	Implementation completed as part of
Chlorine di oxide generation plant	47.6	Mill Development Plan Commissioned in
Lime mud reburning kiln	21.5	May 2008
Improvements in waste water treatment plant	4.9	
Electrostatic precipitators including online stack monitoring	10.0	
Total	159.0]

Table No. 4

Status of Environment Protection Measures Proposed During MEP

Description	Investment (Rs In Crores)	Status
Electrostatic Precipitator for proposed coal fired boiler	3	Commissioned in Jan 2011 as part of Mill Expansion Plan
Augmentation of wastewater treatment plant (WWTP)	3	Ozone treatment plant commissioned in May 2010
Oxygen delignification	36	Commissioned in Jan 2011 as part of Mill Expansion Plan
New brown stock washing	86	
Total	128	

ANNEXURE XV

TNPCB REPORT – AMBIENT AIR QUALITY MONITORING

Report No.DEL/DGL/61 TAMILNADU POLLUTION CONTROL BOARD District Environmental Lab District Environmental Laboratory, Dindigul. AMBIENT AIR QUALITY SURVEY - Report of Analysis.

Rep	port No. F.No.70/TNP	CB/DE										
1. Name of the Industry			C C C C C C C C C C C C C C C C C C C		nadu News		Papers 1	.td.,				
2. Address of the Industry			: Pulp Plant & Paper Division,									
			100 C	100100000000000000000000000000000000000	am - 639 136	6,						
	101220			r Distri	1111							
	ate of Survey		: 14.02	2024 8	15.02.2024							
	Juration of Survey		: 24 Hr	15								
	ategory			Large								
	and use classification		: Indus	100 C								
7. T	ype of Industry		C		e Paper							
					Conditions					_		
	bient	Min	Ma	_	Relative		Min	_	Max			
		23 °C	34%	_	Humidity (%)	61%		83%	_		
wea	ather Condition	Clea	ar Sky		Rain Fall (mm)							
	dominant Wind	NE-	+ sw		Mean Wind		8	8.3 Km/	/hr.			
Din	ection	1.0	11. 0		Speed (Km							
-	Ambient A	ir Qua	hty Su	rvey	Average I							
SL.	Location	Direction Distance (m) *		Height from GL			Pollutants Concentration (µg/m³)					
No		Dire	Distar (m)	Hei	E PM25	PM19	SO ₂	NO ₂	Cl ₂	H2		
1	On top of the Decant House Tewlis Pump House.	NE	400	5	26	54	12	17	<1.0	<0.		
2	On top of Thiru, Muthusamy House No.34, Nallipalayam.	E	1000	5	•	63	14	18	<1.0	<0.		
3	On top of Thira Ramasamy House No.16, Sottaiyur.	ESE	1500	6	-	69	16	21	<1.0	<0.		
4	On top of the scaffolding near TNPL Reservoir, R.C3.	SE	500	4	-	74	17	23	<1.0	<0.		
5	On top of Thiru. Gopal House, Door No.20/4, Kurukkupalayam.	s	1000	5		78	18	24	<1.0	<0.		
6	On top of Thiru. R.Chidambaram House, Door No.3, Kongu Nagar.	SSW	750	5	•	81	22	26	<1.0	<0.		
7	On top of EB Quarters 'Q' Block- IV.	SW	400	7	37	85	23	28	<1.0	<0.		
8	On top of Units Biotech Laboratory Building.	w	400	6	-	76	21	27	<1.0	<0.		
9	On top of Bio- Methamation Building near TNPL Guest House.	NW	700	6	•	70	20	25	<1.0	<0.3		
	Am	bient A	ir-Qua	lity R	esults for f	ugitive	Emissio	n.				
10	On top of the scaffolding near ETP area.	SW	05	2	•	160	27	36	<1.0	<0.		
11	On top of the scaffolding near Coal-Storage yard.	SE	20	2	-	134	24	33	<1.0	<0.3		

Note: All the values are restricted to the sampling period of 08 Hours Average of 24 Hours.

*Indicate Minimum Detectable Limit End of the report

\$ 103 12034 V巻

Jr. Environmental Scientist

Deputy Chief Scientific Officer DEL, TNPCB, Dindigul. ---- Page 2 of 11-----

LATEST NABL ACCREDITED & MoEF&CC RECOGNIZED THIRD PARTY LAB– AMBIENT AIR QUALITY MONITORING TEST REPORT

www.ctllabs.in

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date		CTL/CH/N-38293/2023-24 & 03.04.2024												
Sample Number		N-38293/23-24												
Name of the Customer		M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],												
Addres	S	Kagithapuram - 639 136, Karur District, Tamil Nadu.												
Sample	e Drawn by	Laboratory												
Sample Name		Ambient Air												
Sample Description		Ambient Air Quality												
Sampling Location		TNPL Colony Bio Lab												
GPS Reading		11°03'30.839''N & 77°59'28.551''E												
Sample Drawn on		24.03.2024 & 08.20 to 25.03.2024 & 08.20												
Sample Received on		29.03.2024												
Sampling Plan & Procedure Sample Quantity Equipment used for Sampling Analysis Started on		RDS Sampler S.No:2021-DTD-2016												
		1 No RDS Sampler S.No:2613-DTI-2019 29.03.2024												
								Analysis Completed on		03.04.2024				
								Enviro	nmental Condition					
Relative Humidity		57%												
Ambier	it Temperature	35°C												
Wind Direction		SE												
Weathe	r Condition	Clear Sky												
<u>Test Re</u>														
The abo	ve sample tested as received, and re	sults are as follows:												
SL.NO	PARAMETERS	METHODS	UNITS	RESULTS	NAAQS*									
1	PARTICULATE MATTER (PM _{2.5})	IS 5182 Part 24 - 2019	$\mu g/m^3$	26.0	60									
2	PARTICULATE MATTER (PM ₁₀)	IS 5182 Part 23 - 2006 (R.2017)	$\mu g/m^3$	58.3	100									
-			2											

2	PARTICULATE MATTER (PM ₁₀)	IS 5182 Part 23 - 2006 (R.2017)	$\mu g/m^3$	58.3	100
3	SULPHUR DIOXIDE (SO ₂)	IS 5182 Part 2 - 2001 (R.2017)	$\mu g/m^3$	13.5	80
4	OXIDES OF NITROGEN (NO ₂)	IS 5182 Part 6 - 2006 (R.2017)	$\mu g/m^3$	29.0	80
5	OZONE (O ₃)	CTL/SOP/AIR/08 - 2016	$\mu g/m^3$	40.5	180
6	LEAD (Pb)	IS 5182 PART 22 - 2004 (R.2019)	$\mu g/m^3$	BDL(DL:0.1)	1
7	CARBON MONOXIDE (CO)	CTL/SOP/AIR/23 – 2016	mg/m ³	BDL(DL:1.15)	4
8	AMMONIA (NH ₃)	IS 5182 Part 25 - 2018	$\mu g/m^3$	30.6	400
9	ARSENIC (As)	CTL/SOP/AIR/06 – 2016	ng/m ³	BDL(DL:1.0)	6
10	NICKEL (Ni)	IS 5182 Part 26 - 2020	ng/m ³	BDL(DL:5.0)	20
11	BENZENE (C ₆ H ₆)	IS 5182 PART 11 - 2006 (R.2017)	$\mu g/m^3$	BDL(DL:1.0)	5
12	BENZO(a)PYRENE	IS 5182 PART 12 - 2004 (R.2019)	ng/m ³	BDL(DL:0.5)	1
13	HYDROGEN SULPHIDE(H ₂ S)	IS 5182 PART 07 - 2021	$\mu g/m^3$	BDL(DL:6.0)	-

For Chennai Testing Laboratory Pvt Ltd

Authorised Signatory

G. MANIKANDAN Head - Environment Division (CHEMICAL)

Page 1 of 2

The figure shall not be used to every performential descent the process of the set of th

A - Super 19 | 7.V.K. Industrial Estate | Guindy | E-mail : chennaltestinglab@gmail.com Chennal - 600 032 | Tamil Nadu | India | Telefax : +91-44-2250 1757

www.ctllabs.in

CIN: U93000TN2000PTC043869

TEST REPORT

CTL/CH/N-38293/2023-24 & 03.04.2024

SL.NO	PARAMETERS	METHODS	UNITS	RESULTS	NAAQS*
14	MERCURY (Hg)	CTL/SOP/AIR/25-2016	$\mu g/m^3$	BDL(DL:0.01)	-

*National Ambient Air Quality Standards prescribed by Ministry of Environment and Forests, Government of India vide Gazette Notification G.S.R. 826(E) dated 18.11.2009.

BDL - Below Detection Limit(D.L - Detection Limit)

END OF REPORT

Verified by

Test Report No & Date

For Chennai Testing Laboratory Pvt Ltd

Authorised Signatory G. MANIKANDAN Head - Environment Division (CHEMICAL)

Page 2 of 2

The Report that not be used to compare which we well and party The Agent & beaut pright with our of the addressed in process which was been

CIN: U93000TN2000PTC043869

TEST REPORT

Test Re	eport No & Date	t No & Date CTL/CH/N-38294/2023-24 & 03.04.2024				
Sample	e Number	N-38294/23-24				
Name o	of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],				
Addres	s	Kagithapuram - 639 136,				
		Karur District, Tamil Nadu.				
Sample	e Drawn by	Laboratory				
Sample	e Name	Ambient Air				
Sample	Description	Ambient Air Quality				
Sampli	ng Location	TNPL Guest House				
GPS Re	ading	11°03'45.383''N & 77°59'36.304	''Е			
Sample	e Drawn on	24.03.2024 & 08.35 to 25.03.2024	& 08.35			
Sample	e Received on	29.03.2024				
Sampli	CTL/QSP/F-89 & IS 5182 (Part V) and (Part XIV)					
Sample	e Quantity	1 No				
Equipn	nent used for Sampling	RDS Sampler S.No:2610-DTI-2019				
Analys	is Started on	29.03.2024				
Analys	is Completed on	03.04.2024				
Enviro	nmental Condition					
Relative	e Humidity	57%				
Ambien	t Temperature	35°C				
Wind D	irection	SE				
Weathe	r Condition	Clear Sky				
Test Re:						
The abo	ve sample tested as received, and re	sults are as follows:				
SL.NO	PARAMETERS	METHODS	UNITS	RESULTS	NAAQS*	
1	PARTICULATE MATTER (PM _{2.5})	IS 5182 Part 24 - 2019	$\mu g/m^3$	22.0	60	
2	PARTICULATE MATTER (PM10)	IS 5182 Part 23 - 2006 (R.2017)	$\mu g/m^3$	53.6	100	

	(2.3)		r.6/ ····		
2	PARTICULATE MATTER (PM ₁₀)	IS 5182 Part 23 - 2006 (R.2017)	$\mu g/m^3$	53.6	100
3	SULPHUR DIOXIDE (SO ₂)	IS 5182 Part 2 - 2001 (R.2017)	$\mu g/m^3$	10.7	80
4	OXIDES OF NITROGEN (NO ₂)	IS 5182 Part 6 - 2006 (R.2017)	$\mu g/m^3$	23.5	80
5	OZONE (O ₃)	CTL/SOP/AIR/08 - 2016	$\mu g/m^3$	30.1	180
6	LEAD (Pb)	IS 5182 PART 22 - 2004 (R.2019)	$\mu g/m^3$	BDL(DL:0.1)	1
7	CARBON MONOXIDE (CO)	CTL/SOP/AIR/23 – 2016	mg/m ³	BDL(DL:1.15)	4
8	AMMONIA (NH ₃)	IS 5182 Part 25 - 2018	$\mu g/m^3$	16.5	400
9	ARSENIC (As)	CTL/SOP/AIR/06 – 2016	ng/m ³	BDL(DL:1.0)	6
10	NICKEL (Ni)	IS 5182 Part 26 - 2020	ng/m ³	BDL(DL:5.0)	20
11	BENZENE (C ₆ H ₆)	IS 5182 PART 11 - 2006 (R.2017)	$\mu g/m^3$	BDL(DL:1.0)	5
12	BENZO(a)PYRENE	IS 5182 PART 12 - 2004 (R.2019)	ng/m ³	BDL(DL:0.5)	1
13	HYDROGEN SULPHIDE(H ₂ S)	IS 5182 PART 07 - 2021	$\mu g/m^3$	BDL(DL:6.0)	-

For Chennai Testing Laboratory Pvt Ltd

Authorised Signatory

. 12

Page 1 of 2

The figure phase periods of the second statement of the second statement in the second statement is the second sec

A - Super 19 | 7.V.K. Industrial Estate | Guindy | E-mail : chennaltestinglab@gmail.com Chennal - 600 032 | Tamil Nadu | India | Telefax : +91-44-2250 1757

CIN: U93000TN2000PTC043869

TEST REPORT

CTL/CH/N-38294/2023-24 & 03.04.2024

SL.NO	PARAMETERS	METHODS	UNITS	RESULTS	NAAQS*
14	MERCURY (Hg)	CTL/SOP/AIR/25-2016	$\mu g/m^3$	BDL(DL:0.01)	-

*National Ambient Air Quality Standards prescribed by Ministry of Environment and Forests, Government of India vide Gazette Notification G.S.R. 826(E) dated 18.11.2009.

BDL - Below Detection Limit(D.L - Detection Limit)

END OF REPORT

Verified by

Test Report No & Date

For Chennai Testing Laboratory Pvt Ltd 14

Authorised Signatory G. MANIKANDAN

Page 2 of 2

Head - Environment Division (CHEMICAL)

The Report that not be used to compare which we well and party The shapers is bound any for only one of the addresses in account into the care bound

CIN: U93000TN2000PTC043869

TEST REPORT

Name of the CustomerMAddressK	,	' AND PAPERS LIM	ITED [MAIN PLANT],					
Address K	, Kagithapuram - 639 136, Karur District, Tamil Nadu. Aboratory	' AND PAPERS LIM	ITED [MAIN PLANT],					
	Karur District, Tamil Nadu.							
К	aboratory							
	•			Karur District, Tamil Nadu.				
Sample Drawn by L	Ambient Air		Laboratory					
Sample Name A								
Sample Description A	Ambient Air Quality							
Sampling Location T	NPL Balancing Reservoir -3							
GPS Reading 1	1°02'36.943''N & 78°00'14.08	4''E						
Sample Drawn on 2	4.03.2024 & 08.50 to 25.03.2024	4 & 08.50						
Sample Received on 2	29.03.2024							
Sampling Plan & Procedure C	TL/QSP/F-89 & IS 5182 (Part V)	and (Part XIV)						
Sample Quantity 1	No							
Equipment used for Sampling R	RDS Sampler S.No:2611-DTI-201	9						
Analysis Started on 2	29.03.2024							
Analysis Completed on 0	3.04.2024							
Environmental Condition								
Relative Humidity 5	7%							
Ambient Temperature 3	5°C							
Wind Direction St	Е							
Weather Condition C	ner Condition Clear Sky							
Test Results:								
The above sample tested as received, and results	are as follows:							
SL.NO PARAMETERS	METHODS	UNITS	RESULTS	NAAQS*				

SL.NO	PARAMETERS	METHODS	UNITS	RESULTS	NAAQS*
1	PARTICULATE MATTER (PM _{2.5})	IS 5182 Part 24 - 2019	$\mu g/m^3$	23.7	60
2	PARTICULATE MATTER (PM ₁₀)	IS 5182 Part 23 - 2006 (R.2017)	$\mu g/m^3$	54.0	100
3	SULPHUR DIOXIDE (SO ₂)	IS 5182 Part 2 - 2001 (R.2017)	$\mu g/m^3$	12.5	80
4	OXIDES OF NITROGEN (NO ₂)	IS 5182 Part 6 - 2006 (R.2017)	$\mu g/m^3$	24.8	80
5	OZONE (O ₃)	CTL/SOP/AIR/08 - 2016	$\mu g/m^3$	34.6	180
6	LEAD (Pb)	IS 5182 PART 22 - 2004 (R.2019)	$\mu g/m^3$	BDL(DL:0.1)	1
7	CARBON MONOXIDE (CO)	CTL/SOP/AIR/23 – 2016	mg/m ³	BDL(DL:1.15)	4
8	AMMONIA (NH ₃)	IS 5182 Part 25 - 2018	$\mu g/m^3$	26.0	400
9	ARSENIC (As)	CTL/SOP/AIR/06 – 2016	ng/m ³	BDL(DL:1.0)	6
10	NICKEL (Ni)	IS 5182 Part 26 - 2020	ng/m ³	BDL(DL:5.0)	20
11	BENZENE (C ₆ H ₆)	IS 5182 PART 11 - 2006 (R.2017)	$\mu g/m^3$	BDL(DL:1.0)	5
12	BENZO(a)PYRENE	IS 5182 PART 12 - 2004 (R.2019)	ng/m ³	BDL(DL:0.5)	1
13	HYDROGEN SULPHIDE(H ₂ S)	IS 5182 PART 07 - 2021	$\mu g/m^3$	BDL(DL:6.0)	-

For Chennai Testing Laboratory Pvt Ltd

Authorised Signatory

+ M.

Page 1 of 2

The Baser chail net to anot to except, efforte shifter are realized person. The Baser & bound arty for our of the arthreast is a torow in the randomnum

A - Super 19 | 7.V.K. Industrial Estate | Guindy | E-mail : chennaltestinglab@gmail.com Chennal - 600 032 | Tamil Nadu | India | Telefax : +91-44-2250 1757

CIN: U93000TN2000PTC043869

TEST REPORT

CTL/CH/N-38295/2023-24 & 03.04.2024

SL.NO	PARAMETERS	METHODS	UNITS	RESULTS	NAAQS*
14	MERCURY (Hg)	CTL/SOP/AIR/25-2016	$\mu g/m^3$	BDL(DL:0.01)	-

*National Ambient Air Quality Standards prescribed by Ministry of Environment and Forests, Government of India vide Gazette Notification G.S.R. 826(E) dated 18.11.2009.

BDL - Below Detection Limit(D.L - Detection Limit)

END OF REPORT

Verified by

Test Report No & Date

For Chennai Testing Laboratory Pvt Ltd

Authorised Signatory

Page 2 of 2

VISION

The figure products for any location, while a distribution property in the figure of the second project of the

CIN: U93000TN2000PTC043869

TEST REPORT

Test Re	eport No & Date	CTL/CH/N-38296/2023-24 & 03	8.04.2024			
Sample	Number	N-38296/23-24				
Name o	of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT], Kagithapuram - 639 136,				
Addres	s					
		Karur District, Tamil Nadu.				
Sample	e Drawn by	Laboratory				
Sample	e Name	Ambient Air				
Sample	Description	Ambient Air Quality				
Sampli	ng Location	230 KVA TNEB Station				
GPS Re	ading	11°03'11.314''N & 77°59'22.186	5''Е			
Sample	e Drawn on	24.03.2024 & 09.10 to 25.03.2024	& 09.10			
Sample	e Received on	29.03.2024				
Sampli	Sampling Plan & Procedure CTL/QSP/F-89 & IS 5182 (Part V) and (Part XIV)					
Sample	e Quantity	1 No				
Equipn	nent used for Sampling	RDS Sampler S.No:2025-DTD-201	6			
Analys	is Started on	29.03.2024				
Analys	is Completed on	03.04.2024				
Enviro	nmental Condition					
Relative	e Humidity	57%				
Ambien	t Temperature	35°C				
Wind D	irection	SE				
Weathe	r Condition	Clear Sky				
Test Rea	<u>sults:</u> ve sample tested as received, and re	sults are as follows:				
SL.NO	PARAMETERS	METHODS	UNITS	RESULTS	NAAQS*	
1	PARTICULATE MATTER (PM _{2.5})	IS 5182 Part 24 - 2019	$\mu g/m^3$	25.1	60	
2	PARTICULATE MATTER (PM ₁₀)	IS 5182 Part 23 - 2006 (R.2017)	$\mu g/m^3$	56.5	100	

(1.1 <u>2.5</u>)		μ6/ 111		
PARTICULATE MATTER (PM ₁₀)	IS 5182 Part 23 - 2006 (R.2017)	$\mu g/m^3$	56.5	100
SULPHUR DIOXIDE (SO ₂)	IS 5182 Part 2 - 2001 (R.2017)	$\mu g/m^3$	16.5	80
OXIDES OF NITROGEN (NO ₂)	IS 5182 Part 6 - 2006 (R.2017)	$\mu g/m^3$	28.0	80
OZONE (O ₃)	CTL/SOP/AIR/08 - 2016	$\mu g/m^3$	45.1	180
LEAD (Pb)	IS 5182 PART 22 - 2004 (R.2019)	$\mu g/m^3$	BDL(DL:0.1)	1
CARBON MONOXIDE (CO)	CTL/SOP/AIR/23 – 2016	mg/m ³	BDL(DL:1.15)	4
AMMONIA (NH ₃)	IS 5182 Part 25 - 2018	$\mu g/m^3$	27.0	400
ARSENIC (As)	CTL/SOP/AIR/06 – 2016	ng/m ³	BDL(DL:1.0)	6
NICKEL (Ni)	IS 5182 Part 26 - 2020	ng/m ³	BDL(DL:5.0)	20
BENZENE (C ₆ H ₆)	IS 5182 PART 11 - 2006 (R.2017)	$\mu g/m^3$	BDL(DL:1.0)	5
BENZO(a)PYRENE	IS 5182 PART 12 - 2004 (R.2019)	ng/m ³	BDL(DL:0.5)	1
HYDROGEN SULPHIDE(H ₂ S)	IS 5182 PART 07 - 2021	$\mu g/m^3$	BDL(DL:6.0)	-
	PARTICULATE MATTER (PM ₁₀) SULPHUR DIOXIDE (SO ₂) OXIDES OF NITROGEN (NO ₂) OZONE (O ₃) LEAD (Pb) CARBON MONOXIDE (CO) AMMONIA (NH ₃) ARSENIC (As) NICKEL (Ni) BENZENE (C ₆ H ₆) BENZO(a)PYRENE	PARTICULATE MATTER (PM ₁₀) IS 5182 Part 23 - 2006 (R.2017) SULPHUR DIOXIDE (SO ₂) IS 5182 Part 2 - 2001 (R.2017) OXIDES OF NITROGEN (NO ₂) IS 5182 Part 6 - 2006 (R.2017) OZONE (O ₃) CTL/SOP/AIR/08 - 2016 LEAD (Pb) IS 5182 PART 22 - 2004 (R.2019) CARBON MONOXIDE (CO) CTL/SOP/AIR/23 - 2016 AMMONIA (NH ₃) IS 5182 Part 25 - 2018 ARSENIC (As) CTL/SOP/AIR/06 - 2016 NICKEL (Ni) IS 5182 Part 26 - 2020 BENZENE (C ₆ H ₆) IS 5182 PART 11 - 2006 (R.2017) BENZO(a)PYRENE IS 5182 PART 12 - 2004 (R.2019)	PARTICULATE MATTER (PM ₁₀) IS 5182 Part 23 - 2006 (R.2017) μg/m ³ SULPHUR DIOXIDE (SO ₂) IS 5182 Part 2 - 2001 (R.2017) μg/m ³ OXIDES OF NITROGEN (NO ₂) IS 5182 Part 6 - 2006 (R.2017) μg/m ³ OZONE (O ₃) CTL/SOP/AIR/08 - 2016 μg/m ³ LEAD (Pb) IS 5182 PART 22 - 2004 (R.2019) μg/m ³ CARBON MONOXIDE (CO) CTL/SOP/AIR/23 - 2016 mg/m ³ AMMONIA (NH ₃) IS 5182 Part 25 - 2018 μg/m ³ ARSENIC (As) CTL/SOP/AIR/06 - 2016 ng/m ³ NICKEL (Ni) IS 5182 PART 11 - 2006 (R.2017) μg/m ³ BENZENE (C ₆ H ₆) IS 5182 PART 12 - 2004 (R.2019) ng/m ³	PARTICULATE MATTER (PM ₁₀) IS 5182 Part 23 - 2006 (R.2017) μg/m ³ 56.5 SULPHUR DIOXIDE (SO ₂) IS 5182 Part 2 - 2001 (R.2017) μg/m ³ 16.5 OXIDES OF NITROGEN (NO ₂) IS 5182 Part 6 - 2006 (R.2017) μg/m ³ 28.0 OZONE (O ₃) CTL/SOP/AIR/08 - 2016 μg/m ³ 45.1 LEAD (Pb) IS 5182 PART 22 - 2004 (R.2019) μg/m ³ BDL(DL:0.1) CARBON MONOXIDE (CO) CTL/SOP/AIR/23 - 2016 mg/m ³ BDL(DL:1.15) AMMONIA (NH ₃) IS 5182 Part 25 - 2018 μg/m ³ 27.0 ARSENIC (As) CTL/SOP/AIR/06 - 2016 ng/m ³ BDL(DL:1.0) NICKEL (Ni) IS 5182 Part 26 - 2020 ng/m ³ BDL(DL:1.0) BENZENE (C ₆ H ₆) IS 5182 PART 11 - 2006 (R.2017) μg/m ³ BDL(DL:5.0)

For Chennai Testing Laboratory Pvt Ltd

Authorised Signatory

+ M.

Page 1 of 2

The figure and not be used to entry prime still be the methods person. The figure is beautiently for solve as if the addresses is present with the case beauties.

A - Super 19 | 7.V.K. Industrial Estate | Guindy | E-mail : chennaltestinglab@gmail.com Chennal - 600 032 | Tamil Nadu | India | Telefax : +91-44-2250 1757

CIN: U93000TN2000PTC043869

TEST REPORT

CTL/CH/N-38296/2023-24 & 03.04.2024

SL.NO	PARAMETERS	METHODS	UNITS	RESULTS	NAAQS*
14	MERCURY (Hg)	CTL/SOP/AIR/25-2016	$\mu g/m^3$	BDL(DL:0.01)	-

*National Ambient Air Quality Standards prescribed by Ministry of Environment and Forests, Government of India vide Gazette Notification G.S.R. 826(E) dated 18.11.2009.

BDL - Below Detection Limit(D.L - Detection Limit)

END OF REPORT

Verified by

Test Report No & Date

For Chennai Testing Laboratory Pvt Ltd 14

Authorised Signatory G. MANIKANDAN

Page 2 of 2

Head - Environment Division (CHEMICAL)

The Branes shall not be used to receipt, whittee used for your metamole party The shapers is bound poly for only one of the artiference in proceeds into the cost designed

CIN: U93000TN2000PTC043869

TEST REPORT

Test R	eport No & Date	CTL/CH/N-38297/2023-24 & 03.04.2024				
Sample	e Number	N-38297/23-24				
Name	of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],				
Addres	s	Kagithapuram - 639 136,				
		Karur District, Tamil Nadu.				
Sample	e Drawn by	Laboratory				
Sample	e Name	Ambient Air				
Sample	e Description	Ambient Air Quality				
Sampli	ng Location	Mr. Chidambaram House, Kong	gu Nagar			
GPS Re	ading	11°02'54.806''N & 77°59'15.73	"Е			
Sample	e Drawn on	24.03.2024 & 09.30 to 25.03.2024	4 & 09.30			
Sample	e Received on	29.03.2024				
Sampli	ng Plan & Procedure	CTL/QSP/F-89 & IS 5182 (Part V) and (Part XIV)				
Sample	e Quantity	1 No				
Equipr	nent used for Sampling	RDS Sampler S.No:2023-DTD-201	16			
Analys	is Started on	29.03.2024				
Analys	is Completed on	03.04.2024				
Enviro	nmental Condition					
Relativ	e Humidity	57%				
Ambier	it Temperature	35°C				
Wind D	irection	SE				
Weathe	er Condition	Clear Sky				
<u>Test Re</u>	<u>sults:</u>	-				
The abo	ve sample tested as received, and resu	lts are as follows:	· · · · · ·			
SL.NO	PARAMETERS	METHODS	UNITS	RESULTS	NAAQS*	
1		IC 5102 D + 24 2010	, 3	22.0	(0)	

SL.NO	PARAMETERS	METHODS	UNITS	RESULTS	NAAQS*
1	PARTICULATE MATTER (PM _{2.5})	IS 5182 Part 24 - 2019	$\mu g/m^3$	23.0	60
2	PARTICULATE MATTER (PM ₁₀)	IS 5182 Part 23 - 2006 (R.2017)	$\mu g/m^3$	51.0	100
3	SULPHUR DIOXIDE (SO ₂)	IS 5182 Part 2 - 2001 (R.2017)	$\mu g/m^3$	7.7	80
4	OXIDES OF NITROGEN (NO ₂)	IS 5182 Part 6 - 2006 (R.2017)	$\mu g/m^3$	15.1	80
5	OZONE (O ₃)	CTL/SOP/AIR/08 - 2016	$\mu g/m^3$	19.5	180
6	LEAD (Pb)	IS 5182 PART 22 - 2004 (R.2019)	$\mu g/m^3$	BDL(DL:0.1)	1
7	CARBON MONOXIDE (CO)	CTL/SOP/AIR/23 – 2016	mg/m ³	BDL(DL:1.15)	4
8	AMMONIA (NH ₃)	IS 5182 Part 25 - 2018	$\mu g/m^3$	9.6	400
9	ARSENIC (As)	CTL/SOP/AIR/06 – 2016	ng/m ³	BDL(DL:1.0)	6
10	NICKEL (Ni)	IS 5182 Part 26 - 2020	ng/m ³	BDL(DL:5.0)	20
11	BENZENE (C ₆ H ₆)	IS 5182 PART 11 - 2006 (R.2017)	$\mu g/m^3$	BDL(DL:1.0)	5
12	BENZO(a)PYRENE	IS 5182 PART 12 - 2004 (R.2019)	ng/m ³	BDL(DL:0.5)	1
13	HYDROGEN SULPHIDE(H ₂ S)	IS 5182 PART 07 - 2021	$\mu g/m^3$	BDL(DL:6.0)	-

The figures and the tax was in surger, minime and for my multimat perpose. The Agent & Second pringly with our of the additional is a toronto its /for each designer. A - Super 19 | T.V.K. Industrial Estate | Guindy | E-mail : chennaltestinglab@gmail.com Chennal - 600 032 | Tamil Nadu | India | Telefax : +91-44-2250 1757

For Chennai Testing Laboratory Pvt Ltd

______ + 12 Authorised Signatory G. MANIKANDAN

Page 1 of 2

Head - Environment Division (CHEMICAL)

CIN: U93000TN2000PTC043869

TEST REPORT

CTL/CH/N-38297/2023-24 & 03.04.2024

SL.NO	PARAMETERS	METHODS	UNITS	RESULTS	NAAQS*
14	MERCURY (Hg)	CTL/SOP/AIR/25-2016	$\mu g/m^3$	BDL(DL:0.01)	-

*National Ambient Air Quality Standards prescribed by Ministry of Environment and Forests, Government of India vide Gazette Notification G.S.R. 826(E) dated 18.11.2009.

BDL - Below Detection Limit(D.L - Detection Limit)

END OF REPORT

Verified by

Test Report No & Date

For Chennai Testing Laboratory Pvt Ltd

Authorised Signatory

Page 2 of 2

noivin

The figure products for any location, while a distribution property in the figure of the second project of the

CIN: U93000TN2000PTC043869

TEST REPORT

Test R	Test Report No & Date CTL/CH/N-38298/2023-24 & 03.04.2024						
Sample	Sample Number N-38298/23-24						
Name	Name of the Customer M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],						
Addres							
		Karur District, Tamil Nadu.					
Sample	e Drawn by	Laboratory					
Sample	e Name	Ambient Air					
Sample	Sample Description Ambient Air Quality						
Sampli	ng Location	Mr. Gopal House, New Kurukkı	upalayam				
GPS Re	ading	11°02'53.686''N & 77°59'30.17	/4''E				
Sample	GPS Reading 11°02'53.686''N & 77°59'30.174''E Sample Drawn on 24.03.2024 & 09.50 to 25.03.2024 & 09.50						
Sample	e Received on	29.03.2024					
Sampli	ampling Plan & Procedure CTL/QSP/F-89 & IS 5182 (Part V) and (Part XIV)						
Sample	e Quantity	1 No					
Equipr	nent used for Sampling	RDS Sampler S.No:2228-DTK-201	17				
Analys	is Started on	29.03.2024					
Analys	is Completed on	03.04.2024					
Enviro	nmental Condition						
Relativ	e Humidity	57%					
Ambier	it Temperature	35°C					
Wind D	irection	SE					
Weathe	er Condition	Clear Sky					
<u>Test Re</u>							
The abo	ve sample tested as received, and res	ults are as follows:	1				
SL.NO	PARAMETERS	METHODS	UNITS	RESULTS	NAAQS*		
-							

SL.NO	PARAMETERS	METHODS	UNITS	RESULTS	NAAQS*
1	PARTICULATE MATTER (PM _{2.5})	IS 5182 Part 24 - 2019	$\mu g/m^3$	20.1	60
2	PARTICULATE MATTER (PM ₁₀)	IS 5182 Part 23 - 2006 (R.2017)	$\mu g/m^3$	47.0	100
3	SULPHUR DIOXIDE (SO ₂)	IS 5182 Part 2 - 2001 (R.2017)	$\mu g/m^3$	6.4	80
4	OXIDES OF NITROGEN (NO ₂)	IS 5182 Part 6 - 2006 (R.2017)	$\mu g/m^3$	14.2	80
5	OZONE (O ₃)	CTL/SOP/AIR/08 - 2016	$\mu g/m^3$	BDL(DL:5.0)	180
6	LEAD (Pb)	IS 5182 PART 22 - 2004 (R.2019)	$\mu g/m^3$	BDL(DL:0.1)	1
7	CARBON MONOXIDE (CO)	CTL/SOP/AIR/23 – 2016	mg/m ³	BDL(DL:1.15)	4
8	AMMONIA (NH ₃)	IS 5182 Part 25 - 2018	$\mu g/m^3$	BDL(DL:5.0)	400
9	ARSENIC (As)	CTL/SOP/AIR/06 – 2016	ng/m ³	BDL(DL:1.0)	6
10	NICKEL (Ni)	IS 5182 Part 26 - 2020	ng/m ³	BDL(DL:5.0)	20
11	BENZENE (C ₆ H ₆)	IS 5182 PART 11 - 2006 (R.2017)	$\mu g/m^3$	BDL(DL:1.0)	5
12	BENZO(a)PYRENE	IS 5182 PART 12 - 2004 (R.2019)	ng/m ³	BDL(DL:0.5)	1
13	HYDROGEN SULPHIDE(H ₂ S)	IS 5182 PART 07 - 2021	$\mu g/m^3$	BDL(DL:6.0)	-

For Chennai Testing Laboratory Pvt Ltd

Authorised Signatory

+ 12

Page 1 of 2

The Baser and not be and in comparison where end he me metamor persons.

The Agent & Sound and for any on of the address is a sporter by the set balance.

A - Super 19 | 7.V.K. Industrial Estate | Guindy | E-mail : chennaltestinglab@gmail.com Chennal - 600 032 | Tamil Nadu | India | Telefax : +91-44-2250 1757

CIN: U93000TN2000PTC043869

www.ctllabs.in

TEST REPORT

Test Report No & Date CTL/CH/N-38298/2023-24 & 03.04.2024

SL.NO	L.NO PARAMETERS METHODS		UNITS	RESULTS	NAAQS*
14	MERCURY (Hg)	CTL/SOP/AIR/25-2016	$\mu g/m^3$	BDL(DL:0.01)	-

*National Ambient Air Quality Standards prescribed by Ministry of Environment and Forests, Government of India vide Gazette Notification G.S.R. 826(E) dated 18.11.2009.

BDL - Below Detection Limit(D.L - Detection Limit)

END OF REPORT

For Chennai Testing Laboratory Pvt Ltd . 11 _24

Authorised Signatory

Page 2 of 2

The figure produces for the second science, where and for the methods perform. The figure is reason with fir with our of the artiferent is attended with the cost business.

Verified by

CIN: U93000TN2000PTC043869

TEST REPORT

Sampl Name	e Number of the Customer	N-38299/23-24		ITED [MAIN PLANT],						
Sampl	e Drawn by	Laboratory								
Sampl	e Name	Ambient Air								
Sampl	e Description	Ambient Air Quality								
-	8	Depither area (on the Terrace of BM Plant)								
	•									
-			& 09.00							
-										
•	0		and (Part XIV)							
-			1							
		•								
-										
	-									
Relativ	e Humidity	60%								
Ambiei	nt Temperature	34°C								
Wind D	Direction	SE								
Weathe	er Condition	Clear Sky								
Test Re	esults:	-								
Test Re The abo	<mark>soults:</mark> by the sample tested as received, and res	ults are as follows:	UNITS	DECIUTE	NA 405*					
Test Re The abo SL.NO	esults: ove sample tested as received, and res PARAMETERS	ults are as follows: METHODS	UNITS	RESULTS	NAAQS*					
Test Re The abo	<mark>soults:</mark> by the sample tested as received, and res	ults are as follows:	$\mu g/m^3$	RESULTS 24.5	NAAQS* 60					
Test Re The abo SL.NO	esults: ove sample tested as received, and res PARAMETERS	ults are as follows: METHODS								
Test Re The abo SL.NO	sults: ove sample tested as received, and res PARAMETERS PARTICULATE MATTER (PM _{2.5})	METHODS IS 5182 Part 24 - 2019	$\mu g/m^3$	24.5	60					
Test Re The abo SL.NO 1 2	PARTICULATE MATTER (PM ₁₀)	METHODS IS 5182 Part 24 - 2019 IS 5182 Part 23 - 2006 (R.2017)	μg/m ³ μg/m ³	24.5 55.0	60 100					
Sample NumberN-38299/23-24Name of the CustomerM/S. TAMIL NADU NEWSPRINT AND PAPERAddressKagithapuram - 639 136, Karur District, Tamil Nadu.Sample Drawn byLaboratorySample NameAmbient AirSample DescriptionAmbient Air QualitySample DescriptionDepither area (on the Terrace of BM Plant)GPS Reading11°03'22.665''N & 77°59'54.758''ESample Drawn on25.03.2024 & 09.00 to 26.03.2024 & 09.00Sample Received on29.03.2024Sample Quantity1 NoEquipment used for Sampling Analysis Started on29.03.2024Analysis Completed on29.03.2024Analysis Completed on29.03.2024Analysis Completed on03.04.2024Environmental ConditionRelative HumidityRelative Humidity60%Ambient Temperature34°CWind DirectionSEWeather ConditionClear SkyTest Results: The above sample tested as received, and results are as follows:1PARTICULATE MATTER (PM ₁₀)IS 5182 Part 23 - 2006 (R.2017)1PARTICULATE MATTER (PM ₁₀)IS 5182 Part 2 - 2001 (R.2017)1PARTICULATE MATTER (PM ₁₀)IS 5182 Part 2 - 2001 (R.2017)1PARTICULATE MATTER (PM ₁₀)IS 5182 Part 2 - 2001 (R.2017)1PARTICULATE MATTER (PM ₁₀)IS 5182 Part 2 - 2001 (R.2017)1SulPHUR DIOXIDE (SO2)IS 5182 Part 2 - 2001 (R.2017)1SulPHUR DIOXIDE (SO2)IS 5182 Part 2 - 2001 (R.2017)1SulPHUR DIOXIDE (SO2		μg/m ³ μg/m ³ μg/m ³ μg/m ³	24.5 55.0 17.8	60 100 80						
Test Re The abo SL.NO 1 2 3 4 5	PARAMETERS PARTICULATE MATTER (PM _{2.5}) PARTICULATE MATTER (PM ₁₀) SULPHUR DIOXIDE (SO ₂) OXIDES OF NITROGEN (NO ₂) OZONE (O ₃)	METHODS METHODS IS 5182 Part 24 - 2019 IS 5182 Part 23 - 2006 (R.2017) IS 5182 Part 2 - 2001 (R.2017) IS 5182 Part 6 - 2006 (R.2017) IS 5182 Part 6 - 2006 (R.2017) CTL/SOP/AIR/08 - 2016	μg/m ³ μg/m ³ μg/m ³ μg/m ³ μg/m ³	24.5 55.0 17.8 30.0	60 100 80 80					
Test Re The abo 1 2 3 4 5 6	sults: per sample tested as received, and rest PARAMETERS PARTICULATE MATTER (PM10) SULPHUR DIOXIDE (SO2) OXIDES OF NITROGEN (NO2) OZONE (O3) LEAD (Pb)	METHODS METHODS IS 5182 Part 24 - 2019 IS 5182 Part 23 - 2006 (R.2017) IS 5182 Part 2 - 2001 (R.2017) IS 5182 Part 6 - 2006 (R.2017) IS 5182 Part 6 - 2006 (R.2017) IS 5182 Part 2 - 2004 (R.2019)	μg/m ³ μg/m ³ μg/m ³ μg/m ³ μg/m ³ μg/m ³	24.5 55.0 17.8 30.0 53.2	60 100 80 80 180					
Test Re The abo SL.NO 1 2 3 4 5 6 7	sults: parameters PARTICULATE MATTER (PM _{2.5}) PARTICULATE MATTER (PM ₁₀) SULPHUR DIOXIDE (SO ₂) OXIDES OF NITROGEN (NO ₂) OZONE (O ₃) LEAD (Pb) CARBON MONOXIDE (CO)	METHODS METHODS IS 5182 Part 24 - 2019 IS 5182 Part 23 - 2006 (R.2017) IS 5182 Part 2 - 2001 (R.2017) IS 5182 Part 6 - 2006 (R.2017) IS 5182 Part 6 - 2006 (R.2017) IS 5182 Part 2 - 2004 (R.2019) IS 5182 PART 22 - 2004 (R.2019) CTL/SOP/AIR/23 - 2016	μg/m ³ μg/m ³ μg/m ³ μg/m ³ μg/m ³ μg/m ³ mg/m ³	24.5 55.0 17.8 30.0 53.2 BDL(DL:0.1)	60 100 80 80 180 1					
Test Re The abo SL.NO 1 2 3 4 5 6 7 8	of the CustomerM/S. TAVIIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT], Kagithapuran - 639 136, Karur District, Tamil Nadu.Karur District, Tamil Nadu.Karur District, Tamil Nadu.le Destrict, Tamil Nadu.Karur District, Tamil Nadu.le DestriptionAmbient Air Qualityle DescriptionAmbient Air Qualityle DescriptionDepither area (on the Terrace of BM Plant)eading10°3'22.665''N & 77'5'5'.4.758''Ele Drawn on25.03.2024 & 09.00 to 26.03.2024 & 09.00le Received on29.03.2024le Quantity1Noment used for SamplingRDS Sampler S.No:2613-DTI-2019sis Started on29.03.2024le Humidity60%er ConditionSampler S.No:2613-DTI-2019ve Humidity60%or ConditionSampler S.No:2613-DTI-2019ver sumeSampler S.No:2613-DTI-2019prepratureJaft Sampler S.No:2613-DTI-2019prepratureSampler S.No:261				60 100 80 80 180 1 4					
Test Re The abo SL.NO 1 2 3 4 5 6 7 8 9	sults: PARAMETERS PARTICULATE MATTER (PM2.5) PARTICULATE MATTER (PM10) SULPHUR DIOXIDE (SO2) OXIDES OF NITROGEN (NO2) OZONE (O3) LEAD (Pb) CARBON MONOXIDE (CO) AMMONIA (NH3) ARSENIC (As)	METHODS METHODS IS 5182 Part 24 - 2019 IS 5182 Part 23 - 2006 (R.2017) IS 5182 Part 2 - 2001 (R.2017) IS 5182 Part 6 - 2006 (R.2017) IS 5182 Part 2 - 2004 (R.2019) CTL/SOP/AIR/08 - 2016 IS 5182 Part 25 - 2018 CTL/SOP/AIR/06 - 2016	Mathematical Set							
Test Re The abo SL.NO 1 2 3 4 5 6 7 8 9 10	PARAMETERS PARTICULATE MATTER (PM _{2.5}) PARTICULATE MATTER (PM ₁₀) SULPHUR DIOXIDE (SO ₂) OXIDES OF NITROGEN (NO ₂) OZONE (O ₃) LEAD (Pb) CARBON MONOXIDE (CO) AMMONIA (NH ₃) ARSENIC (As) NICKEL (Ni)	METHODS METHODS IS 5182 Part 24 - 2019 IS 5182 Part 23 - 2006 (R.2017) IS 5182 Part 2 - 2001 (R.2017) IS 5182 Part 6 - 2006 (R.2017) IS 5182 Part 2 - 2004 (R.2019) CTL/SOP/AIR/08 - 2016 IS 5182 Part 25 - 2018 CTL/SOP/AIR/06 - 2016 IS 5182 Part 26 - 2020	μg/m³ μg/m³ μg/m³ μg/m³ μg/m³ μg/m³ μg/m³ μg/m³ ng/m³ ng/m³ ng/m³	24.5 55.0 17.8 30.0 53.2 BDL(DL:0.1) BDL(DL:1.15) 44.6 BDL(DL:1.0) BDL(DL:5.0)	60 100 80 80 180 1 4 400					
Test Re The abo 1 2 3 4 5 6 7 8 9 10 11	sults: PARAMETERS PARTICULATE MATTER (PM _{2.5}) PARTICULATE MATTER (PM ₁₀) SULPHUR DIOXIDE (SO ₂) OXIDES OF NITROGEN (NO ₂) OZONE (O ₃) LEAD (Pb) CARBON MONOXIDE (CO) AMMONIA (NH ₃) ARSENIC (As) NICKEL (Ni) BENZENE (C ₆ H ₆)	METHODS METHODS IS 5182 Part 24 - 2019 IS 5182 Part 23 - 2006 (R.2017) IS 5182 Part 2 - 2001 (R.2017) IS 5182 Part 6 - 2006 (R.2017) IS 5182 Part 6 - 2006 (R.2017) IS 5182 Part 6 - 2006 (R.2017) IS 5182 Part 6 - 2004 (R.2019) CTL/SOP/AIR/08 - 2016 IS 5182 Part 25 - 2018 CTL/SOP/AIR/06 - 2016 IS 5182 Part 26 - 2020 IS 5182 PART 11 - 2006 (R.2017)	μg/m ³ μg/m ³ μg/m ³ μg/m ³ μg/m ³ μg/m ³ μg/m ³ ng/m ³ ng/m ³ ηg/m ³	24.5 55.0 17.8 30.0 53.2 BDL(DL:0.1) BDL(DL:1.15) 44.6 BDL(DL:1.0) BDL(DL:5.0) BDL(DL:1.0)	60 100 80 80 180 1 4 400 6 20					

13

HYDROGEN SULPHIDE(H₂S)

For Chennai Testing Laboratory Pvt Ltd

Authorised Signatory

G. MANIKANDAN Head - Environment Division (CHEMICAL)

+ M_____E

BDL(DL:6.0)

 $\mu g/m^3$

Page 1 of 2

The figure product the second conversion, residence and the procession protocols. The figure is beams print for some of the artifecture is proceed with the cost feature

IS 5182 PART 07 - 2021

A - Super 19 | T.V.K. Industrial Estate | Guindy | E-mail : chennaltestinglab@gmail.com Chennal - 600 032 | Tamil Nadu | India | Telefax : +91-44-2250 1757

CIN: U93000TN2000PTC043869

TEST REPORT

CTL/CH/N-38299/2023-24 & 03.04.2024

SL.NO	PARAMETERS	METHODS	UNITS	RESULTS	NAAQS*
14	MERCURY (Hg)	CTL/SOP/AIR/25-2016	$\mu g/m^3$	BDL(DL:0.01)	-

*National Ambient Air Quality Standards prescribed by Ministry of Environment and Forests, Government of India vide Gazette Notification G.S.R. 826(E) dated 18.11.2009.

BDL - Below Detection Limit(D.L - Detection Limit)

END OF REPORT

Verified by

Test Report No & Date

For Chennai Testing Laboratory Pvt Ltd

Authorised Signatory G. MANIKANDAN

Page 2 of 2

Head - Environment Division (CHEMICAL)

14

The Report that not be used to compare which we well and party The shapers is bound poly for only one of the artiference in proceeds into the cost designed

CIN: U93000TN2000PTC043869

TEST REPORT

Test R	eport No & Date	CTL/CH/N-38300/2023-24 & 03	.04.2024					
Sampl	e Number	N-38300/23-24						
Name	of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],						
Addres	SS	Kagithapuram - 639 136,						
	Karur District, Tamil Nadu.							
Sampl	e Drawn by	Laboratory						
Sampl	e Name	Ambient Air						
Sampl	e Description	Ambient Air Quality						
Sampli	ng Location	TEWLIS BUILDING						
GPS Re	ading	11°03'17.07''N & 78°00'19.584''	E					
Sampl	e Drawn on	25.03.2024 & 08.30 to 26.03.2024	& 08.30					
Sampl	e Received on	29.03.2024						
Sampli	ng Plan & Procedure	CTL/QSP/F-89 & IS 5182 (Part V) a	and (Part XIV)					
Sample	e Quantity	1 No						
Equipr	nent used for Sampling	RDS Sampler S.No:2245-DTK-2017	,					
Analys	is Started on	29.03.2024						
Analys	is Completed on	03.04.2024						
Enviro	nmental Condition							
Relativ	e Humidity	60%						
Ambier	it Temperature	34°C						
Wind D	irection	SE	SE					
Weathe	er Condition	Clear Sky						
<u>Test Re</u>								
The abo	ve sample tested as received, and re	sults are as follows:		1				
SL.NO	PARAMETERS	METHODS	UNITS	RESULTS	NAAQS*			
1	PARTICULATE MATTER (PM _{2.5})	IS 5182 Part 24 - 2019	$\mu g/m^3$	29.2	60			
2	PARTICULATE MATTER (PM ₁₀)	IS 5182 Part 23 - 2006 (R.2017)	$\mu g/m^3$	57.3	100			
[-					

2	PARTICULATE MATTER (PM ₁₀)	IS 5182 Part 23 - 2006 (R.2017)	$\mu g/m^3$	57.3	100
3	SULPHUR DIOXIDE (SO ₂)	IS 5182 Part 2 - 2001 (R.2017)	$\mu g/m^3$	15.0	80
4	OXIDES OF NITROGEN (NO ₂)	IS 5182 Part 6 - 2006 (R.2017)	$\mu g/m^3$	28.5	80
5	OZONE (O ₃)	CTL/SOP/AIR/08 - 2016	$\mu g/m^3$	37.6	180
6	LEAD (Pb)	IS 5182 PART 22 - 2004 (R.2019)	$\mu g/m^3$	BDL(DL:0.1)	1
7	CARBON MONOXIDE (CO)	CTL/SOP/AIR/23 – 2016	mg/m ³	BDL(DL:1.15)	4
8	AMMONIA (NH ₃)	IS 5182 Part 25 - 2018	$\mu g/m^3$	21.6	400
9	ARSENIC (As)	CTL/SOP/AIR/06 – 2016	ng/m ³	BDL(DL:1.0)	6
10	NICKEL (Ni)	IS 5182 Part 26 - 2020	ng/m ³	BDL(DL:5.0)	20
11	BENZENE (C ₆ H ₆)	IS 5182 PART 11 - 2006 (R.2017)	$\mu g/m^3$	BDL(DL:1.0)	5
12	BENZO(a)PYRENE	IS 5182 PART 12 - 2004 (R.2019)	ng/m ³	BDL(DL:0.5)	1
13	HYDROGEN SULPHIDE(H ₂ S)	IS 5182 PART 07 - 2021	$\mu g/m^3$	BDL(DL:6.0)	-

For Chennai Testing Laboratory Pvt Ltd

Authorised Signatory

. 12

Page 1 of 2

The figure phase periods of the second statement of the second statement in the second statement is the second sec

A - Super 19 | 7.V.K. Industrial Estate | Guindy | E-mail : chennaltestinglab@gmail.com Chennal - 600 032 | Tamil Nadu | India | Telefax : +91-44-2250 1757

CIN: U93000TN2000PTC043869

www.ctllabs.in

TEST REPORT

Test Report No & Date CTL/CH/N-38300/2023-24 & 03.04.2024

SL.NO	PARAMETERS	METHODS	UNITS	RESULTS	NAAQS*
14	MERCURY (Hg)	CTL/SOP/AIR/25-2016	µg/m ³	BDL(DL:0.01)	-

*National Ambient Air Quality Standards prescribed by Ministry of Environment and Forests, Government of India vide Gazette Notification G.S.R. 826(E) dated 18.11.2009.

BDL - Below Detection Limit(D.L - Detection Limit)

END OF REPORT

For Chennai Testing Laboratory Pvt Ltd + M _24

Authorised Signatory

Page 2 of 2

on

Verified by

The figure products for any location, while a distribution property in the figure of the second project of the

ANNEXURE XVI

TNPCB REPORT – NOISE MONITORING

Report No.DEL/DGL/61

TAMILNADU POLLUTION CONTROL BOARD

District Environmental Laboratory, Dindigul.

AMBIENT/SOURCE NOISE LEVEL SURVEY - Report of Analysis

Report No.TNPCB/DEL/DGL/F.No.70/NLS/2023-2024, Dated:20.03.2024

Nar	ne of the	Industry	M/s.7	M/s.Tamilnadu Newsprint and Papers Ltd.,				
Address of the Industry			Kagith	Pulp Plant Division, Kagithapuram - 639 136, Karur District.				
Dat				15.02.2024				
Con	sent Ord	er No.	No. 24	lo. 2405250861727/ Dt:01.02.2024			_	
gory	Red - L	arge.	Land	use classification	Ir	dustrial	_	
of Su	irvey	Ambient/	Noise	Time of Survey		Day	_	
Meteorological conditions			Clear Sky	-				
	Add Dat Con gory of St	Address of t Date of Surv Consent Ord gory Red - La of Survey	Date of Survey Consent Order No. gory Red - Large. of Survey Ambient/	Address of the Industry Pulp I Kagiti Karur Date of Survey 15.02.2 Consent Order No. No. 24 gory Red - Large. Land 1 of Survey Ambient/Noise	Address of the Industry Pulp Plant Division, Kagithapuram - 639 136, Karur District. Date of Survey 15.02.2024 Consent Order No. No. 2405250861727/ Dt:01.02. gory Red - Large. Land use classification of Survey Ambient/Noise Time of Survey	Address of the Industry Pulp Plant Division, Kagithapuram - 639 136, Karur District. Date of Survey 15.02.2024 Consent Order No. No. 2405250861727/ Dt:01.02.202 gory Red - Large. Land use classification of Survey Ambient/Noise Time of Survey	Address of the Industry Pulp Plant Division, Kagithapuram - 639 136, Karur District. Date of Survey 15.02.2024 Consent Order No. No. 2405250861727/ Dt:01.02.2024 gory Red - Large. Land use classification Industrial of Survey Ambient/Noise Time of Survey Day	

Logging Parameters

Instrument Used	CESVA	Serial No.	T243080	
Logging Interval	Minutes each point	Measuring Range	40-120	
Weighting "A"	Peak Weighting "C"	Time Weighting	A	
Sound Incidence	Random / Frontal	Time in hrs	14.30 Hrs - 16.00 Hrs	

			and the second se	And in case of the local division of the loc
port of	Noise	Level	Monitor	rin:

SL	Location	5-	e -	5	Sou	B(A)	
No		Duration (min)	Distance (m)	Direction	Leg	Lmin	Lmax
1.	I.Boundary Line. Near Community Hall Premises.	0.30	750	N	47.9	41.2	59.3
2	Near Tewlis Pump House.	0.30	400	NE	42.4	40.6	61.3
3.	Near Sludge Gate Premises.	0.30	760	s	49.4	42.3	60.2
4.	Open Field Near Railway Station.	0.30	750	SW	51.9	47.1	59.2
5.	Behind TNPL Temple Premises.	0.30	750	w	54.6	53.1	61.4
6.	AT SOURCE: Near Paper Machine Area	0.30		•	73.3	72.5	75.4
7,	Near Power Boiler -VI	0.30	-	•	76.1	75.6	79.2

End of the report

0 03/de24 Jr. Environmental Scientist

Deputy Chief Scientific Officer

DEL, TNPCB, Dindigul.

---- Page 9 of 11----

LATEST NABL ACCREDITED & MoEF&CC RECOGNIZED THIRD PARTY LAB – NOISE MONITORING TEST REPORT

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	Date CTL/CH/N-38334/2023-24 & 03.04.2024			
Sample Number N-38334/23-24				
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],			
Address	Kagithapuram - 639 136,			
	Karur District, Tamil Nadu.			
Sample Drawn by	Laboratory			
Sample Name	NOISE			
Sample Description	AMBIENT NOISE			
Sample Drawn on	26.03.2024			
Sampling Plan & Procedure	CTL/QSP/F-89 & IS 9989			
Equipment used for Sampling	Sound Level Meter S.NO:554062			

Test Results:

The above sample tested as received, and results are as follows: NOISE LEVEL dB (A) Leq NOISE LEVEL dB (A)Leq LIMITS* SL.NO LOCATION GPS READING Day Noise Night Noise Near Community Hall 11°03'46.02''N & 1 41.7 34.8 Premises 77°59'47.418''E 11°03'19.494''N & 2 Near TEWLIS Pump House 43.7 35.0 78°00'24.214''E 11°03'6.109''N & Near Kandasamy Palayam 3 48.4 35.9 Baggase Road 78°00'19.585''E 11°02'37.785''N & 4 Infront of Reservoir BR-3 55.0 42.6 78°00'14.529''E 75 11°03'14.019''N & 5 57.0 Near Sludge Gate Premises 46.9 78°00'20.738''E Open Field Near Railway 11°03'3.738''N & 6 59.2 52.7 77°59'32.198''E Station Behind TNPL Temple 11°03'33.738''N & 7 44.4 35.9 Premises 77°59'30.33''E 11°03'48.42''N & TNPL Staff Quarters (Staff 8 49.3 39.6 Club Area) 77°59'28.68''E

* CPCB Limits (Day &Night Time)

END OF REPORT

Verified by

O OF REPORT***

For Chennai Testing Laboratory Pvt Ltd

Authorised Signatory

(CHENICAL)

Page 1 of 1

LIMITS*

70

P

The figure products to each to except while out the product of the

A - Super 19 | T.V.K. Industrial Estate | Guindy | E-mail : chennaitestinglab@gmail.com Chennai - 600 032 | Tamil Nadu | India | Telefax : +91-44-2250 1757

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	t Report No & Date CTL/CH/N-38335/2023-24 & 03.04.2024	
Sample Number	N-38335/23-24	
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],	
Address	Kagithapuram - 639 136,	
	Karur District, Tamil Nadu.	
Sample Drawn by	Laboratory	
Sample Name	NOISE	
Sample Description	WORKZONE NOISE	
Sample Drawn on	26.03.2024	
Sampling Plan & Procedure	CTL/QSP/F-89 & IS 9989	
Equipment used for Sampling	Sound Level Meter - S.No:554062	

Test Results:

The above sample tested as received, and results are as follows:

SL.NO	LOCATION	GPS READING	NOISE LEVEL dB (A)	LIMITS*
1	Lime Kiln Plant -2 Near Tier -3	11°03'17.232''N & 77°59'44.394''E	75.2	
	Chemical Baggase -3 Area Near Filtrate Tank -2 [21523-105-010]			
	Paper Machine -3 Area Near Master Reel 7mts Level	11°03'21.262''N & 77°59'31.848''E	84.6	85 dB (A)
	Power Boiler -V [Near Bottom Ash Collecting Area]	11°03'17.76''N & 77°59'45.018''E	82.9	

* As Per Factory Act Limit

END OF REPORT

Verified by

For Chennai Testing Laboratory Pvt Ltd

______. . 14

Authorised Signatory

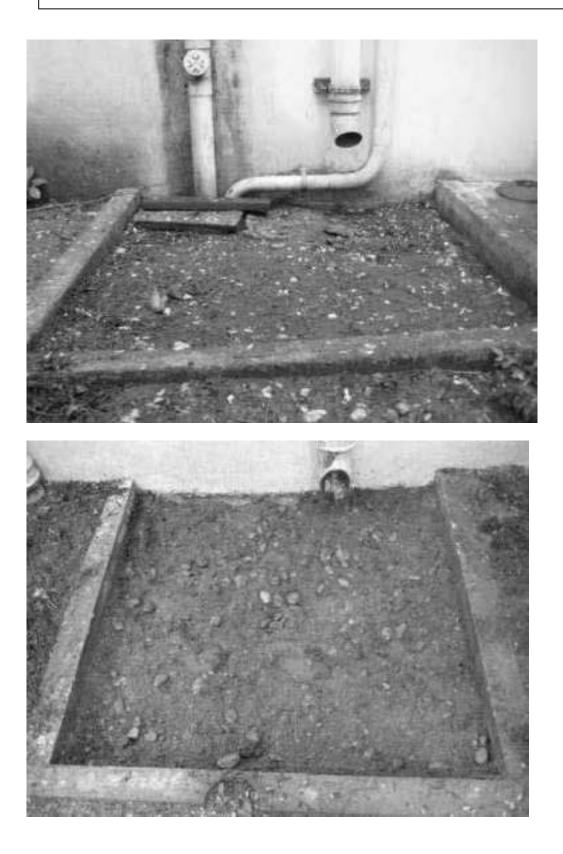
G. MANIKANDAN Head - Environment Division (CHEMICAL)

Page 1 of 1

The figure products for any figure products with the second secon

A - Super 19 | T.V.K. Industrial Estate | Guindy | E-mail : chennaitestinglab@gmail.com Chennai - 600 032 | Tamil Nadu | India | Telefax : +91-44-2250 1757

NOISE CONTROL MEASURES


MEASURES TAKEN TO CONTROL NOISE POLLUTION

- High noise generating Vapour Compression System has been replaced with low noise Vapour Absorption Machine in chilling plant operations.
- Reciprocating compressors are replaced with comparatively less noise generating centrifugal compressors
- Boiler start-up vent lines, Boiler safety valves, Steam line safety valves etc are provided with silencers to reduce noise pollution
- In order to minimise the exposure of high noise in compressor house, a separate room has been provided for the working personnel.
- Periodical maintenance and condition monitoring of equipments to minimize noise generation.
- > Operators are not exposed near the machine for more period.
- Use of PPEs like Ear muffs and ear plugs by the working personnel in high noise zone is ensured.
- Awareness Boards on Noise Pollution have been displayed in all high noise zones.

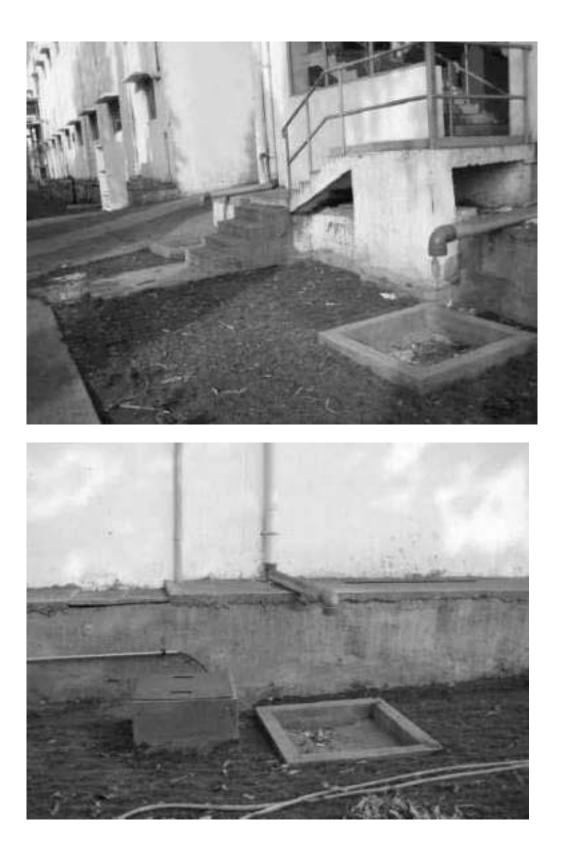
ANNEXURE XVII

RAIN WATER HARVESTING FACILITIES AT TNPL

RAIN WATER HARVESTING STRUCTURES AT COLONY AREA

RAIN WATER COLLECTION POND AT COLONY

RAIN WATER HARVESTING AT BOREWELL POINTS



RAIN WATER HARVESTING STRUCTURES AT MILL

Water Reservoirs No : 1 & 2 in TNPL Colony

Substitution of process fresh water with harvested rain water from BR 5

RAIN WATER HARVESTING STRUCTURES AT ADMINSTRATIVE BUILDINGS

Rain water harvesting facilities at TNPL

Sl. No	Description	Roof Area	RWH pits	Collection	Effective area available for recharging
		(Sq.M)	(Nos)	%	(Sq.M)
	Plant Area				
1	Admin Buliding	1,200.00	4	100%	1,200.00
2	Industrial Canteen	1,100.00	6	100%	1,100.00
3	Security Office	430.00	3	100%	430.00
4	Time Office	130.00	5	100%	130.00
5	Telephone Exchange	70.00	2	100%	70.00
6	Civil Office	216.00	4	100%	216.00
7	Safety & Instrumentation	276.00	3	100%	276.00
8	Paper Machine III	11,595.58	24	60%	6,957.35
9	A -Godown	4,900.94	8	50%	2,450.47
10	New Reel Storage Godown	7,181.88	12	50%	3,590.94
11	Multi prupose godown (old compressor house)	738.39	5	100%	738.39
12	Energy Maintance Office	233.20	1	100%	233.20
13	110 KV YARD - MCC	161.60	2	100%	161.60
14	TG # 6	834.15	5	60%	500.49
15	Boiler # 6 Control room	137.32	3	100%	137.32
16	Boiler # 6 - MCC	237.25	2	100%	237.25
17	Boiler # 7 - MCC	81.25	2	100%	81.25
18	RB # 3 Office/ MCC / I/O rack	808.20	6	100%	808.20
19	Deinking Plant - Type	3,796.00	5	40%	1,518.40
20	Pulper Building	4,551.00	14	80%	3,640.80
21	DIP waste paper Godown	2,135.00	7	75%	1,601.25
	Cement Plant				
22	Admin Buliding	324.82	3	100%	324.82
23	Canteen and Time Office	15.60	3	100%	15.60
24	Marketing Office	100.00	3	100%	100.00
25	Weigh Bridge	14.61	1	100%	14.61
26	CCR Building	358.09	5	100%	358.09
	Housing Colony				
27	Director Bungalow	162.64	2	100%	162.64
28	G.M Bungalow	177.97	4	100%	177.97
29	Т.А- Туре	514.87	4	100%	514.87
30	A - Type	1,313.01	8	100%	1,313.01
31	B - Type	1,692.94	12	100%	1,692.94
32	C - Type	4,595.72	46	100%	4,595.72

33	D - Type	4,111.52	56	100%	4,111.52
34	E - Type	3,557.62	66	100%	3,557.62
35	F - Type	8,840.15	164	100%	8,840.15
36	Guest House Rooms	194.33	3	100%	194.33
37	Guest House Suits	269.89	3	100%	269.89
38	Officer's Hostel	325.28	2	100%	325.28
39	Guest house Dinning/Kitchen	348.51	4	100%	348.51
40	A - Hostel	548.33	6	100%	548.33
41	B - Hostel	548.33	6	100%	548.33
42	A,B Hostel Dining	443.03	2	100%	443.03
43	Co-operative store	401.02	1	100%	401.02
44	Staff club	627.32	2	100%	627.32
45	Recreation club	318.31	1	100%	318.31
46	Colony maintenance office	103.72	2	100%	103.72
47	Dispensary	168.96	1	100%	168.96
48	OAT	121.75	1	100%	121.75
49	Post office	47.40	1	100%	47.40
50	Post master - Residence	47.86	1	100%	47.86
51	Matriculation School MAIN BLO	1,486.99	30	100%	1,486.99
52	Matriculation School PRIMARY B	1,208.18	28	100%	1,208.18
53	CBSE School	1,951.67	10	100%	1,951.67
54	ITI Building	690.52	12	100%	690.52
55	Bio-Tech Lab	290.06	2	100%	290.06
	Balancing Reservoir Area				
1	Balancing Reservoir Area # 1	32,000.00	1	100%	32,000.00
2	Balancing Reservoir Area # 2	95,000.00	1	100%	95,000.00
3	Balancing Reservoir Area # 3	100,000.00	1	100%	100,000.00
4	Balancing Reservoir Area # 4	112,500.00	1	100%	112,500.00
5	Balancing Reservoir Area # 5	30,000.00	1	100%	30,000.00
6	Rainwater collection bond # 6	5,000.00	1	100%	5,000.00
7	Rainwater collection bond # 7	5,000.00	1	100%	5,000.00
8	Rainwater collection bond # 8	7,450.00	1	100%	7,450.00
9	Rainwater collection bond # 9	2,850.00	1	100%	2,850.00
	Total	466,534.78	627		451,799.93

ANNEXURE XVIII

EC LETTER SUBMITTED TO TOWN PANCHAYAT

EMS/112/13 March 21, 2013

The Executive Officer, Kagithapuram Town Panchayat, Kagithapuram, Karur Dist.

Sir,

ं

· ; '.

Sub: Implementation of De-inking plant and up-gradation of Captive Co-generation plant by TNPL- Intimation on receipt of Environmental Clearance- Reg.

Ref: F-No.J-11011/710/2007-IA-II(I) dated 11th February 2013.

With reference to subject matter, it is hereby informed that Ministry of Environment and Forests, New Delhi has accorded "Environmental Clearance" for installation of 300 TPD Deinked Pulp Line and upgradation of Captive Co-generation plant by TNPL vide reference cited above.

A copy of Environmental Clearance letter is enclosed for your information.

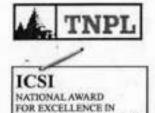
¹7hanking you,

Yours faithfully, for TAMIL NADU NEWSPRINT AND PAPERS LIMITED,

RAMA - TOUS. (3 (R. MANI) DIRECTOR (OPERATIONS)

Name-Stamp of office of posting Date-Stamp Sender's Address : DIPECTOP (OPERATIONS) Tamil Nadu Newsprint and Papers Ltd., KAGITHAPURAM Karur Dist. Tamil Nada. PIN EM .///2//3 ACKNOWLEDGEMENT RECEIPT No. ļ. Received a Registered Letter / Post Card / Packet / Parcel O HEREA lhe Freculive Addressed to (Name). Jamil Nooly Aulo LEDELI THE 10001 Panchoyal Lagran 5194 the payson 339 IBE I? sured for Runers Score out the matter not required di Fil Tamil Na Special Grade Tan Pattern Valuaressee affed articles only. ļ Vasithapuram, Pugahur 639136

ANNEXURE XIX


SUBMISSION OF SIX MONTHLY REPORT DETAILS

Sl No	Description	Submitted on
01	First Report	17/04/2013
02	Second Report	30/11/2013
03	Third Report	29/05/2014
04	Fourth Report	10/12/2014
05	Fifth Report	19/06/2015
06	Sixth Report	26/11/2015
07	Seventh Report	25/06/2016
08	Eighth Report	27/10/2016
09	Ninth Report	27/04/2017
10	Tenth Report	13/11/2017
11	Eleventh Report	12/05/2018
12	Twelth Report	24/11/2018
13	Thirteen Report	08/05/2019
14	Fourteen Report	11/12/2019
15	Fifteenth Report	29/05/2020
16	Sixteenth Report	25/11/2020
17	Seventeenth Report	14/05/2021
18	Eighteenth Report	29/11/2021
19	Nineteenth Report	30/05/2022
20	Twentieth Report	29/11/2022
21	Twenty First Report	13/05/2023
22	Twenty Second Report	22/11/2023
23	Twenty Third Report	Current Report

SUBMITTING DETAILS OF SIX MONTHLY COMPLIANCE REPORT

ANNEXURE XX

ENVIRONMENTAL STATEMENT (FORM V)

CORPORATE GOVERNANCE

Tamilnadu Newsprint and Papers Limited

(A Government of Tamilnadu Enterprise)

Kagithapuram - 639 136, Karur Dist. Tamilnadu, India. Phone : (0091) 04324 - 277001 to 277010 (10 Lines) : (0091) 04324 - 277025 PMD : 04324 - 277027 Fax HR : 04324 - 277273 Cell : 94860 41341 to 41343

ENV/15/23 16 September 2023

The District Environmental Engineer, Tamil Nadu Pollution Control Board, S.F.No. 654 Part, 655 Part - L.N.S Village, L.G.B Nagar, Arivuthirukkovil Road, Karur - 639 002.

Dear Sir,

Sub: Furnishing of Environmental Statement (Form V) - TNPL Main Plant (Pulp and Paper & Power Plant) - reg.

We are enclosing the environmental statement pertaining to both TNPL Main Plant (Pulp and Paper Manufacturing Unit) and TNPL Captive Power Plant for the financial year ending 31st March 2023, in Form V duly filled in with all relevant details as per Environment (Protection) Act, 1986 and Rules 1986.

This is for your kind information and records.

Thanking you,

Yours truly, For TAMIL NADU NEWSPRINT AND PAPERS LIMITED,

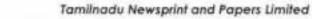
Executive Director (Operations) - FAC

CC:

The Joint Chief Environmental Engineer, Tamil Nadu Pollution Control Board, No.9, 4th Street, Brindhavan Road, Fairlands, Salem- 636 016

Corporate Office : 67, Mount Road, Guindy, Chennai - 600 032 TNPL - The Corporate Identity Number : L 22121 TN 1979 PL C 007799 Fax: 044 - 22350834 / 22354614, Phone: 044 - 22354415 / 16 / 18, 22301094 - 97, E-mail : response@tnpl.co.in / export@tnpl.co.in Web: www.tnpl.com

A TNPL


ENVIRONMENTAL STATEMENT FOR THE FINANCIAL YEAR 2022-2023

FORM - V (See Rule: 14)

Environmental Audit Report for the financial year ending the 31st March 2023.

PART - A

(1)	Name and address of the owner/occupier of the Industry, operation or process	*	TAMIL NADU NEWSPRINT AND PAPERS LIMITED
(ii)	Industry category Primary:- (STC code) Secondary:- (SIC code)	:	RED
(iii)	Production capacity - Units		
	Newsprint & Printing and Writing Papers Power Generation Capacity	:	4,80,000 MT/Annum 103.62 MW
(iv)	Year of establishment	1	1979
(v)	Date of the last environmental Statement submitted	:	26/09/2022

PART - B

Water and Raw material consumption

SI No	Description	UOM	Quantity
01	Overall Water Consumption	KL/day	36342
02	Process Water Consumption		
02 a)	Pulp Mill	KL/day	9417
02 b)	Paper Machine, DIP & CAP	KL/day	10936
02 c)	Soda Recovery Plant	KL/day	1495
02 d)	Soft water for process	KL/day	1764
02 e)	Others	KL/day	2539
	Total Quantity for Process use	KL/day	26151
03	Cooling Water consumption		
03 a)	Water used for boiler feed	KL/day	3003
03 b) Water used for Cooling purpose		KL/day	3808
	Total quantity for cooling purpose	KL/day	6811
04	Domestic Water	KL/day	3379

Name of products

Process Water consumption (except Domestic) Per unit (MT) of products

	During the Previous financial year (2021-2022)	During the current financial year (2022-2023)		
	(1)	(2)		
Writing and Printing papers	35 M³/t	29 M3 /t		

(ii) RAW MATERIAL CONSUMPTION FOR PAPER PRODUCTION

	* .		Consumption of raw material per unit of output		
SL NO	Name of the raw material	Name of Products	During the previous Financial year (2021-2022)	During the current Financial year (2022-2023)	
	Unit of measure	ment	ADMT/MT of Pape	er Produced	
01	Bagasse				
02	Wood	Newsprint			
01	Bagasse(Depithed)		1.99	1.83	
02	Wood	Writing and Printing	1.00	1.03	
03	Waste Paper	papers	0.178	0.205	
04	Imported Pulp		0.051	0.030	

PRODUCTS MANUFACTURED

Writing and Printing papers	:	420793	MT
News Print	+	Nil	MT
Overall daily average Power production	1	59.93	MW
Equivalent Paper Production/Day	:	1153	MT
RAW MATERIAL CONSUMPTION			
Bagasse (Depithed)	:	768484	MT
Wood	=	433034	MT
Waste Paper	2	86112	MT
Imported Pulp	5	12754	ADMT

PART-C

POLLUTION DISCHARGED TO ENVIRONMENT / UNIT OF OUTPUT (Parameter as specified in the consent issued)

(a) (i)	Pollutants	Quantity of pollutants discharged (MTs/day)	Quantity of pollutants discharged in (Kgs/T of paper)	Concentration of pollutants discharged in (mg/l) except % sodium**	Percentage variation from prescribed in discharges standards with
	TSS	1.34	1.16	61	reasons Nil
	TDS at 180°c	31.13	27.00	1420	NII
Water	COD	4.70	4.08	215	Nil
	BOD	0.58	0.50	26	Nil
	Chloride	8.43	7.31	385	Nil
	Sulphates	5.96	5.17	272	Nil
	Na (%)		-	43	Nil
	The same strategies and a strategies where			termination and the second sec	

** As per TNPCB lab results

Section wise average Effluent Water Quantity generation

SINo	Description	UOM	Quantity
01	Pulp Mill	KL/day	25393
02	Paper Machine	KL/day	11078
03	Deinking pulp Plant	KL/day	1800
04	Soda Recovery Plant	KL/day	2400
05	Others (Energy, WTP, Sewage, canteen, ETP etc.)	KL/day	4500
Avg. Eff	fluent quantity generated	KL/day	45171
Avg. tre	rated effluent quantity discharged for irrigation	KL/day	25918

(b) AIR

Main Plant (Pulp and Paper manufacturing facility)

Name of	pollutant
Prescribe	d norms

: SPM (mg/NM³) : 150 mg/NM³

Stack No.	Stack attached to	Average Quantity of pollutants emitted (Kgs per day)	Average Quantity of pollutants emitted in (Kg per ton of paper)	Average Concentration of pollutants emitted in mg/NM ³ **	Percentage variation from prescribed in discharges standards with reasons
3	SRP-LIME KILN I	38.35	0.03	73.5	NIL
35	SRP-Boiler 3	380.86	0.33	68.5	NIL
36	SRP-LIME KILN II	29.03	0.03	68.0	NIL

** As per TNPCB lab results

ENVIRONMENTAL STATEMENT FOR THE FINANCIAL YEAR 2022-2023

Name of pollutant Prescribed norms : H₂S (mg/NM³) : 10 mg/NM³

Stack No.	Stack attached to	Quantity of pollutants emitted (Kgs per day)	Quantity of pollutants emitted in Kg per ton of paper	Concentration of pollutants emitted in mg/NM ³ **	Percentage variation from prescribed in discharges standards with reasons
3	SRP-LIME KILN I	0.110	0.0001	0.204	NIL
35	SRP-Boiler 3	1.181	0.0010	0.210	NIL
36	SRP-LIME KILN II	0.089	0.0001	0.210	NIL

** As per TNPCB lab results

Name of pollutant : SO₂ (mg/NM³) Prescribed norms : 400 mg/NM³

Stack No.	Stack attached to	Quantity of pollutants emitted (Kgs per day)	Quantity of pollutants emitted in Kg per ton of paper	Concentration of pollutants emitted in mg/NM ³ **	Percentage variation from prescribed in discharges standards with reasons
3	SRP-LIME KILN I	23.74	0.020	45.5	NIL
35	SRP- Boiler 3	256.08	0.222	45.5	NIL
36	SRP-LIME KILN II	16.86	0.014	39.5	NIL

** As per TNPCB lab results

Name of pollutant : NO_x (mg/NM³) Prescribed norms : 500 mg/NM³

Stack No.	Stack attached to	Quantity of pollutants emitted (Kgs per day)	Quantity of pollutants emitted in Kg per ton of paper	pollutants	Percentage variation from prescribed in discharges standards with reasons
3	SRP-LIME KILN I	20.09	0.017	38.5	NIL
35	SRP-Boiler 3	211.01	0.183	37.5	NIL
36	SRP-LIME KILN II	13.871	0.012	32.5	NIL

** As per TNPCB lab results

RECOVERY BOILERS:

No of Boilers

One

Type of Fuel

SVE

Black Liquor Dry Solids & Furnace Oil

Type of firing

Spray thro' nozzles

Average Quantity of Fuel Fired in boilers

Description	Type of fuel	used
	Black Liquor Dry Solids	Furnace Oil
UOM	MT/hr	KL/hr
Recovery Boiler 3	51.05	0.10

LIME KILN:

A TNPL

No of units

Type of Fuel

Furnace Oil & Bio Gas

Two

Type of firing

Spray thro' nozzles

Average Quantity of Fuel Fired in Lime Kiln

5

1

Description	Type of fu	el used
	Furnace Oll	Bio Gas
UDM	KL/hr	M ³ /hr
Lime Kiln 1	0.79	615.78
Lime Kiln 2	0.77	470.12

CAPTIVE POWER PLANT

Name	of	po	lutant	
Procesi	ih.	d at	nome	

SPM (mg/NM³)

Power Boiler 4 &5 -100mg/NM³ Power Boiler 6 &7 - 50mg/NM³

Serial No.	Stack attached to	Quantity of pollutants emitted (Kgs per day)	Quantity of pollutants emitted in (Kg per ton of paper)	Concentration of pollutants emitted in mg/NM3 **	Percentage variation from prescribed in discharges standards with reasons
1	Power Boiler 4	115.66	0.10	30.0	NIL
2	Power Boiler 5	77.42	0.07	28.5	NIL
3	Power Boiler 6	156.39	0.14	27.5	NIL
4	Power Boller 7	85.23	0.04	26.0	NIL

** As per TNPCB lab results

Name of pollutant Prescribed norms

SO2 (mg/NM3)

is Power Boiler 4 to 7 -600mg/NM3

Serial No.	Stack attached to	Quantity of pollutants emitted (Kgs per day)	Quantity of pollutants emitted in (Kg per ton of paper)	Concentration of pollutants emitted in mg/NM3 **	Percentage variation from prescribed in discharges standards with reasons
1	Power Boller 4	246.75	0.214	64.0	NIL
2	Power Boller 5	160.29	0.139	59.0	NIL
3	Power Boller 6	301.49	0.261	53.0	NIL
4	Power Boiler 7	157.35	0.068	48.0	NIL

** As per TNPCB lab results

ENVIRONMENTAL STATEMENT FOR THE FINANCIAL YEAR 2022-2023

Name of pollutant

NOx (mg/NM⁴)

1

Prescribed norms :

Power Boiler 4 & 5 -600 mg/NM³ Power Boller 6 & 7 -450 mg/NM³ (As per MoEF Notification dated 19.10.2020)

4 operating + 3 standby (from 26/12/2013)

Serial No.	Stack attached to	Quantity of pollutants emitted (Kgs per day)	Quantity of pollutants emitted in (Kg per ton of paper)	Concentration of pollutants emitted in mg/NM3 **	Percentage variation from prescribed in discharges standards with reasons
1	Power Boiler 4	223.61	0.193	58.0	NIL
2	Power Boiler 5	123.67	0.107	45.5	NIL
3	Power Boller 6	264.48	0.229	46.5	NIL
4	Power Boiler 7	127.85	0.055	39.0	NIL

** As per TNPCB lab results

POWER BOILERS:

No of Boilers

Type of fuel Type of firing

Average Quantity of Fuel Fired in boilers

Description Indigenous Coal Imported Coal Raw Lignite Bagasse Pith Wood Dust UOM Kg/hr Kg/hr Kg/hr Kg/hr Kg/hr Boiler 4 436 9478 405 0 0 Boiler 5 550 12309 811 6288 50 Boiler 6 804 14690 928 9074 0 Boiler 7 801 15354 1307 8475 õ

Fluidised bed

Multifuel

PART - D Hazardous Wastes

(in accordance with Hazardous Wastes (Management and Transboundary Movement) Rules, 2016

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		TOTAL QUA	NTITY in MT
	Unit of measurement	During the previous financial year 2021- 2022	During the current financial year 2022 2023
(1) From	Process section		
(a) Spent chemical - Lime sludge (Moisture:45-50%)	MT	265204	123100
(b) Spent chemical - Lime Grits (Moisture:20-25%)	MT	3906.64	3894.58
(2) From Polis	tion Control Facilit	ies	
(a) ETP Primary Sludge (Moisture:75-80%)	MT	48716.97	37727.71
(3) From M	aintenance section		
(a) Condemned lead acid Batteries generated during replacement at Automobile and Electrical departments	MT	6,95	5.53
(b) Waste containing copper and copper alloys	MT	7.25	8.26
(c) Discarded asbestos generated during demolition of redundant buildings and structures	MT	0	0
(d) Used Glass wool generated during steam line insulation replacement	MT	17.56	8.89
(e) Spent ion exchange resins generated in Water Treatment Plant	MT	0	o
(f) Used oil/spent oil generated from industrial operations as lubricant in hydraulic systems or other operations	MT	62.53	71.31
(g) Exhausted Lithium Molecular Sieves generated from Oxygen Plant	MT	Ö	2.98

Solid	PART – E Wastes Generation Quantity	
	During the previous financial year 2021-2022	During the current financial year 2022-2023
(a) From Process		
DEINKING PLANT		
Plastic generated from Waste Paper Process (Moisture: 30%)	2904.76	3819.33
Sludge generation from Deinking Plant	35608.44	34006.62
	PULP MILL	
Wood bark / dust from wood handling (Moisture: 45-50%)	11963.01	14258.94
Pith from Pulp Mill (Moisture: 45-50%)	141495	155077
Hardwood Screen fine rejects (Moisture: 60- 65%)	1425.00	1342.48
(b) From Pollution Control facility		
EFFLUENT TREATMENT PLANT		
MLSS – ETP secondary sludge (on dry basis)	3530	3935
POWER BOILER		
Wet ash generated	2083	3674.64
Fly ash generated	33809.00	33756.08
Solid Was	tes Recycle/Sold/ Disposal/ Quantity	
(c).(1).Solid waste recycled or re-utilized		
Wood bark / dust (Moisture:25-30%) as fuel in Power Boilers	0	0
Wood bark / dust (Moisture:25-30%) as fuel in TNPL Mini Cement Plant	11815	11451
Pith from Pulp Mill (Moisture:45-50%) as fuel in Power Boilers	169267	169663
Fly ash used for TNPL Cement production.	32325.64	33756.08
Wet ash used for TNPL Cement production.	940.07	714.67
Sludge from Deinking Plant used in TNPL Cement for production. (Moisture: 45-50%)	5563.70	1570.69
(c).(2).Solid Waste Sold		
Pith (Moisture: 45-50%)	4039.28	15.63
Fly ash	2166.85	0
Bottom ash	263.03	0
Wet Fly ash Wood bark	0 1347.07	10546.66
Hardwood Screen fine rejects	VALUE AND INC.	1844.85
Moisture: 60-65%)	1530.63	933.77
c).(3).Solid Waste Disposed		
Sludge from Deinking Plant Moisture: 45-50%)	30044.74	32435.93
Plastic generated from Waste Paper Process Molsture: 30%)	2904.76	3819.33

PART-F

PART-F

The characteristics of solid as well as Hazardous wastes and disposal practice adopted are given below.

HAZARDOUS WASTES

SL No	Description	Major Constituents	Mode of disposal
From Pr	rocess section		
01	Spent chemical - Lime sludge (Moisture: 45 to 50%)	Acid insolubles:6-7% Silica as SiO2: 6% Mixed Oxides (R2O3): 1.6% Calcium as CaCO3: 87.8% Magnesium as MgCO3:1.54% Free CaO: 0.76% Sodium as Na2O: 1.67%	FY 2022-23 disposal details: Reused in TNPL Cement Plant- 121500 MT
02	Spent chemical - Lime grits (Moisture: 20 to 25%)	Acid insolubles:10% Silica as SIO2: 10% Mixed Oxides (R2O3): 3-1% Calcium as CaCO3: 81.2% Magnesium as MgCO3:2.76% Free CaO: 2.04% Sodium as Na2O: 1.09%	Lime Grit is being consumed as raw material in TNPL Cement Mill.
(2) From	Pollution Control Fa	cilities	
03	ETP Primary Sludge (Moisture:75- 80%)	Gross Calorific value: 2300-2700 Kcal/kg (OD basis) Organics:60-70% Inorganics:30-40%	Entire quantity sold as raw material to small cardboard industries.
(3) From	Maintenance sectio	0	
04	Condemned lead acid Batteries	Wastes mainly contains Lead	Disposed to PCB authorized recyclers.
05	Waste containing copper and copper alloys	Wastes mainly contains copper and its alloy such as brass, bronze etc.	Disposed to PCB authorized recyclers.
06	Discarded asbestos	Lead (Total): 53.7mg/Kg Chromium (Total): 28.64mg/kg Nickel (Total): 90.87mg/Kg Zinc (Total): 21.28mg/Kg Copper (Total): 60.3 mg/Kg	No disposal during FY 2022-23.
07	Used Glass wool	Lead (Total): 43.29mg/Kg Chromium (Total): 41.07mg/kg Nickel (Total): 32.81mg/Kg Zinc (Total): 20.05mg/Kg Copper (Total): 49.89 mg/Kg	Disposed to M/s. Re sustainability IWM solutions limited, Virudhunagar for direct land filling.
80	Spent ion exchange resins	Calorific Value: 5777 Cal/g Lead (Total): 65.49mg/Kg Chromium (Total): 20.62mg/kg Nickel (Total): 33.58mg/Kg Zinc (Total): 24.64mg/Kg Copper (Total): 30.32 mg/Kg	No disposal during FY 2022-23.
09	Waste Oil	Chromium: 0.15ppm Total Halogens: 3805 ppm Lead: 3.85 ppm Nickel: 0.18 ppm	Disposed to PCB authorized recyclers

TNPL

SL No	Description	Major Constituents	Mode of disposal
10 .	Exhausted Lithium Molecular Sieves	Lead (Total): 171.51mg/Kg Chromium (Total): 6.3mg/kg Nickel (Total): 29.31mg/Kg Zinc (Total): 25.88mg/Kg Copper (Total): 9.2 mg/Kg	No disposal during FY 2022-23.

ENVIRONMENTAL STATEMENT FOR THE FINANCIAL YEAR 2022-2023

SOLID WASTE

Description	Major constituents: (all values are on OD basis)	Mode of disposal
Wood bark/ dust from Chipper house (Moisture:25-30%)	Ash:2.4% Volatile matter:71.5% Fixed carbon:18.9% Gross calorific value:4000-4600 Kcal/kg	Wood dust is used as fuel in Power Boiler. Wood bark is sold as fuel to agencies generating power through bio mass.
Wet Ash	Ash : 90-95 % LOI : 3 to 5%	Used as raw material for TNPL Cement mill and disposed to brick manufacturing units.
Fly Ash	Ash: 88 to 92% LOH: 8 to 12%	Used as raw material for TNPL Cement mill and other cement mills. Balance disposed for brick manufacturing units and traders possessing TNPCB consent orders.
MLSS - ETP secondary sludge	Absorbable Organic Halide-BDL	Composted and Used as manure
Pith (Moisture:45-50%)	Ash: 9% Volatile matter:72% Fixed carbon:13% Gross calorific value:4000 -4200 Kcal/kg	Used as fuel in power boilers. A small quantity is disposed to cardboard manufactures as raw material.
Dip Sludge (Moisture @ 40-50 %)	Gross Calorific value: 1400-1700 Kcal/kg (OD basis) Organics :30% Inorganics: 70%	Part of waste is being used as raw material in TNPL Mini Cement Plant and balance disposed to small cardboard industries.
Plastic Generated from waste paper	Received various types of plastic wastes along with waste paper consignment	Disposed to Cement Plant for co - Processing,
	Wood bark/ dust from Chipper house (Moisture:25-30%) Wet Ash Fly Ash MLSS - ETP secondary sludge Pith (Moisture:45-50%) Dip Sludge (Moisture @ 40-50 %) Plastic Generated	(all values are on OD basis)Wood bark/ dust from Chipper house (Moisture:25-30%)Ash:2.4% Volatile matter:71.5% Fixed carbon:18.9% Gross calorific value:4000-4600 Kcal/kgWet AshAsh : 90-95 % LOI : 3 to 5%Fly AshAsh: 88 to 92% LOI : 8 to 12%MLSS - ETP secondary sludgeAbsorbable Organic Halide-BDI.Pith (Moisture:45-50%)Ash: 9% Volatile matter:72% Fixed carbon:13% Gross calorific value:4000 -4200 Kcal/kgDip Sludge (Moisture @ 40-50 %)Gross Calorific value: 1400-1700 Kcal/kg (OD basis) Organics: 30% Inorganics: 70%PlasticGenerated Received various types of plastic wastes

A TNPL

ENVIRONMENTAL STATEMENT FOR THE FINANCIAL YEAR 2022-2023

PART-G

Impact of the Pollution Control Measures on conservation of natural resources and its consequence on the cost of production.

The bio-gas generated in Bio-methanation plant using high COD bagasse wash effluent is being used in the lime kilns to replace furnace oil leading to reduce Carbon footprint. During 2022-23, TNPL utilized 84.81 Lakh m3 of biogas in Lime Kiln and 2.43 Lakh m3 of biogas in Power Boilers resulted in savings of 5088.90 KL of Furnace oil and 432 MT of imported coal respectively. Further, by utilizing about 170083 MT of internally generated agro fuels such as Pith, Wood dust as fuel in Power Boilers has resulted in conservation of about 52902 MT of Imported coal.

- TNPL is playing a significant role in the non-conventional energy. The company has generated 394.59 lakh units of wind power during FY 2022-23 through wind turbines thereby reducing 36737 tCO₂ GHG emissions.
- TNPL has implemented various water conservation projects and has attained overall water consumption of about 29 KL Per ton of paper during FY 2022-23 which is one of the lowest in paper industry.
- To improve the pulpwood availability, TNPL has developed two plantation schemes, viz., Farm Forestry and Captive Plantation during 2004-05 with a view to develop the vacant and degraded lands belonging to farmers and Government sources respectively. During FY 2022-23, plantations were raised in 22495 acres of barren lands involving S359 farmers in various parts of Tamil Nadu under Farm Forestry scheme. So far, pulp wood has been raised in 233774 acres involving 45738 farmers under Farm Forestry Scheme. This scheme helps the dry land farmers to improve their livelihood. Further, the efforts put in by TNPL for raising pulpwood plantation started yielding benefits from FY 2009-10.

A TNPL

ENVIRONMENTAL STATEMENT FOR THE FINANCIAL YEAR 2022-2023

- During FY 2022-2023, TNPL has procured 533320 MT of pulpwood from the plantation sources in which about 515322 MT from Farm forestry and balance 17998 MT from Captive Plantation sources. Further, so far, 26.39 lakhs MT of pulpwood have been procured from the above plantation sources during last Fourteen years.
- TNPL has established a state of the art clonal production centre with a capacity to produce 55 million plants per annum to supply quality clones to farmers at subsidized rates. TNPL has produced 464 Lakh plants and supplied 463 lakh plants to the farmers field at subsidized rates during FY 2022-2023 to cover an extent of 22495 acres under plantation activity.
- TNPL has established a Biodiversity park by assembling more than 176 species of trees/shrubs comprising of flowering, fruit bearing, medicinal, ornamental, timber etc. In about 6.07 hectares of land at TNPL Housing colony area under the concept of biodiversity enrichment to sustain the green environment. The ecosystem maintained in the Biodiversity Park is assessed periodically for effective monitoring of flora and fauna in the park. As the trees are started flowering/fruiting, resulted

BIODIVERSITY PARK

in attracting fauna which includes butterflies, birds, reptiles, insects which are being evidenced at site. This facilitates the improvement of Biodiversity by introduction of new species by pollination, seeds transfer through migratory birds. In future, it is planned to undertake a detailed study on the flora and fauna in the Biodiversity Park.

A TNPL

ENVIRONMENTAL STATEMENT FOR THE FINANCIAL YEAR 2022-2023

About 30% of the pulpwood used in the process is certified by FSC which guarantees that the pulp wood plantations are managed in a socially and environmentally responsible way.

TNPL has been awarded Forest Stewardship Council (FSC) certification for Forest Management and Chain of Custody. This certificate confirms the linkage between forest and end user, ensuring that products with FSC label uphold principle and criteria which bring the highest social and environmental benefits. Further, FSC label will ensure the customers that the input material has been produced from scientifically managed, environmentally responsible forest plantation,

		~	-	47	
Coursel 2	11.1.1.1.1.	1.82	-	-	1
		of the local division in which the	all and an	E	
		-			
			39	-Cirm	

F serviced Distant

Statement Street,

Post consumer reclaimed material and pre consumer reclaimed material (Waste fibre consumed in De-Inking plant) is also included in the scope of Forest Stewardship Council certification from the year 2014.

A TNPL

ENVIRONMENTAL STATEMENT FOR THE FINANCIAL YEAR 2022-2023

Recognition for Environmental Protection:

- TNPL has been declared as "Winner" of 1" Sustainable Industrial Practice Award for the year 2023 conducted by M/s Federation of Indian Chambers of Commerce and Industry, New Delhi
- TNPL has been honored as "CHAMPION" in the "Water Stewardship Award" category during India Corporate Governance and Sustainability Vision Summit 2023 conducted by Indian Chamber of Commerce, Kolkata in Mar'2023.
- TNPL has been declared as "WINNER" under EHS Best practices category" for the year 2023 conducted by M/s Greentech Foundation (GF), New Delhi

TNPL won "Green Champion Award" for the financial year 2022-23 conducted by Tamil Nadu Pollution Control Board.

A TNPL

PART-H

Additional measures / Investment proposals for Environmental Protection including Abatement of Pollution, Prevention of Pollution

During the Past, TNPL implemented various expansion/modernization programmes mainly focusing on the Environmental baseful and baseful a

Environ	mental	benef	its as	exp	lained	D60	DW:	

S? No	Name of the Project	Completion Period and investment	Environmental Benefit	Improvement on Production
01	Mill Development Plan (MDP)	May '08 & Rs.612 Crores	Switching over from conventional bleaching to Elemental Chlorine Free bleaching (CIO2) in both Hardwood and Chemical baggase bleaching section.	Paper Production from 2.05Lakh to 2.45Lakh per annum Pulp increased from 530TPD to 800 TPD
02	Mill Expansion Plan (MEP)	Jan '2011 & Rs.230 Crores	introduced Environment friendly technologies such as Oxygen delignification and twin roll washers & Hot stock screening technologies in the chemical bagasse pulping line along with a new paper Machine	Paper Production from 2.45Lakh to 4.0 Lakh per annum. Further, Total pulp production increased to 880 TPD.
03	Deinked Pulp (DIP) plant & Upgradation of Power Plant	Nov'2013 & Rs.310 Crores	Implemented 300TPD Deinked pulp plant by utilizing waste paper as raw material to replace high cost imported pulp possessing environment friendly operations and no bleaching chemicals such as CIO2 is utilized.	No increase in paper production. With 300TPD of DIP, Total Pulp Production increased to 1180TPD. Power generation increased from 81.12 to 103.62MW.

- Towards manufacture of Deinked pulp, mostly imported Sorted Office Waste Paper were used. This waste paper is made up of soft wood fibre which is having higher fibre length. This high quality is having superior strength properties (tear factor) when compared with home made Hard wood and Chemical Bagasse Pulp. This property of soft wood fibre helps to improve the machine runnability and pave way to reduce paper breaks on the machine.
- The principle of Paper Making is formation of fiber mat (Pulp) and filling the gaps with chemicals (filler materials). Based on the R&D studies and subsequent implementation of strategy in production activities in the past, it was inferred that the enhancement of filler in paper results in increase the weight of the paper without pulp requirement.
- During FY 2022-23, the average ash content in paper was varying from 14.00 to 19.00 % subject to quality of Paper Production, the higher percentage of Ash in Paper resulted in increasing the Paper Production at lower cost.
- During FY 2022-2023, TNPL utilized about 12754 MT of purchased pulp. Usage of purchased pulp for production have not contribute to pollution load of the mill.

PART-I

Other particulars for improving quality of Environment

- The effluent treatment plant is operated with activated sludge process to maintain the quality of treated effluent within the norms prescribed by Tamil Nadu Pollution Control Board.
- The following process modifications were carried out as part of fresh water conservation and subsequently achived 29 KL/MT of Paper produced, the lowest water consumption unit in India.
 - Polishing excess clear filtrate of PM#1 using Algas filter.
 - Recycling of around 9000 M3/day Paper Machine Effluent after clarification in raw material preparation
 - Recycling of around 1800 M3/day EOP alkaline filtrate in post Oxygen washer in hardwood fiber line operations by close looping Extraction stage effluent from hardwood into the brown loop
 - Return of pump seal water and hydraulic oil cooling water in Hardwood Street to water treatment plant.
 - Replacement of fresh water with Machine backwater for wet lap usage
 - Collection of all plug screw feeders gear box cooling water and all seal water outlet and pump to LC tank for process usage in Chemical Bagasse street.
 - Return of hydraulic oil pump cooling water to WTP in Chemical Bagasse street.
 - Diversion of SRP Foul condensate water to hot water system in Chemical Bagasse street.
 - Replacement of fresh water in Mud filter vacuum pump with process condensate.
 - Return of ID, FD cooler water and feed pump cooler water of RB#2 to water treatment plant.
 - Return of lime kiln support roller bearing cooler water to water treatment plant.
 - Plugging of all water pumps sealing outlet.
 - Replacement of fresh water with backwater for cleaning.
 - Providing On-off value in Deculator vacuum pump to avoid overflow in PM#1 Deculator seal pit.
 - Diversion of vacuum pump gear box cooling water in PM#1 to warm water tank.
 - Diversion of excess cooling water collection tank to sweat dryer tank.
 - Diversion of steam and condensate pump sealing water of PM#2 to warm water tank from cuiver pit.
 - Replacement of fresh water with clear water for acceleration dilution of filler/starch in PM#3.
 - Diversion of Deculator seal pit tank over flow to cooling back water tank in PM#3.
 - Recovery of Metso refiner heat exchanger cooling water.
 - Recovery of refiners, screen and pumps seal water in PM#3.
 - Recycling and uses of press Felt Uhle box water through Algas filter in PM #1.

A TNPL

ENVIRONMENTAL STATEMENT FOR THE FINANCIAL YEAR 2022-2023

MEASURES TAKEN TOWARDS TDS REDUCTION

- Oxygen delignification and twin roll presses were introduced in both Hardwood and Bagasse pulping street. The twin roll presses are more efficient in washing, and COD carryover in pulp into bleach plant is reduced and so also the TDS. The O2 delignification reduces the lignin carryover to bleach plant by 30-40%, resulting in corresponding reduction in bleach chemicals and thus equivalent reduction in TDS into effluent from bleach plant.
- Paper machine effluent is being segregated and clarified separately to remove the suspended solids and the clarified water is being used in backwater clarifications replacing treated effluent as a measure to reduce TDS in the treated effluent.
- Recycling of EOP alkaline filtrate in post Oxygen washer in both Hardwood & Chemical Bagasse Pulping operations. Introduction of organic peroxide stabilizer in Deinking Pulp bleaching operation resulted in 50% Sodium silicate reduction to achieve equivalent reduction of TDS in the respective effluent stream.
- Usage of ferrous chloride has been stopped for the treatment of anaerobic effluent in ETP.
- The soft water supplied to Chlorine Di Oxide plant and VAM has been replaced with R.O. water. Similarly, Soft water has been replaced with process water in cooling towers and pulp mills. Further, Filtered water is being used in place of soft water for NIPCO hydraulic system. This resulted in stoppage of soft water generation and thus paved way for reduction of TDS from the WTP effluent stream.

A report on the "World Environment Day" celebrations carried out by TNPL during 2023 is enclosed herewith as Annexure I.

ANNEXURE I

REPORT ON WORLD ENVIRONMENT DAY- 2023 CELEBRATIONS CONDUCTED AT TNPL

- On behalf of Tamiinadu Newsprint and papers limited, on Monday 5th of June, Environment Day was celebrated at Paper Manufacturing industry and Cement Manufacturing industry, Kagithapuram, Pugalur. Banners were also displayed near the plant entrances and time office to create awareness on various environmental issues including the environmental theme of the year 2023, "Beat Plastic Pollution".
- This year's environment theme is "Beat Plastic Pollution "and to emphasize environment friendly lifestyle as proposed by Tamilnadu Pollution Control Board, the officers, Staffs, workmen, contract workmen and Apprentice in the Paper plant premises and cement plant premises have taken environmental pledge.
- As part of these celebrations, an environmental awareness Green Run (Greenathon) was flagged off by Mr. Bandi Gangadhar, Chief vigilance Officer, Tamilnadu Newsprint and Paper Limited, in which both genders above the age of fifteen participated in Greenathon and took part in covering a distance of about five kilo meters.
- All 500 people who pre-registered for above green run were given a free eco-friendly T-shirt made by recyclable plastic materials on behalf of TNPL. Prizes worth Rs.10,000, Rs.7,500, and Rs.5,000 were awarded to the first, second, and third winners of Greenathon in each category (men and women).
- Dr.R.Seenivasan Chief General Manager (Plantation, R&D and SO), TNPL welcomed the participants in the prize distribution ceremony of Greenathon. The award ceremony was presided over by Mr. Bandi Gangadhar, Chief vigilance Officer, TNPL in the presence of Mr. S.V.R. Krishnan, ED (Operation). Mr. Gunasekaran, Chairman, Pugalur Municipality and Mr. Jayakumar, Assistant Environmental Engineer, TNPCB, Karur were invited has the guest of honor for the ceremony.
- Mr. Sundaravathanam, Superintendent of Police, Karur, who delivered a special speech and distributed the prizes to the winners and participants of the competition. He released TNPL's Environment Friendly Lifestyle Pocket Guide, which was received by Mr. Jayakumar, Assistant Environmental Engineer, TNPCB, Karur.

Subsequently, in order to protect the environment, the special representatives who participated in the ceremony and the officials of TNPL planted 4000 saplings in the residential premises of TNPL. Around 500 employees including contract workmen participated in the celebrations. The celebration was well organized by Environment and Plantation Department.

ANNEXURE XXI

DIP- ENVIRONMENTAL CLEARANCE - NEWSPAPER ADVERTISEMENT

March 4, 2013

TNPL/27/301

The Chief Conservator of Forests (Central), Ministry of Environment & Forests Regional office (South Zone), 4th Floor E & F Wings, Kendriya Sadan, II Block, Koramangala, Bangalore -34

Dear Sin

. :

Sub: Installation of 300 TPD Delnked Pulp Line (DPL) and up-gradation of Captive Cogeneration Plant (CCP) at Kaglthapuram, District Karur in Tamil Nadu by M/s Tamil Nadu Newsprint and Papers Limited

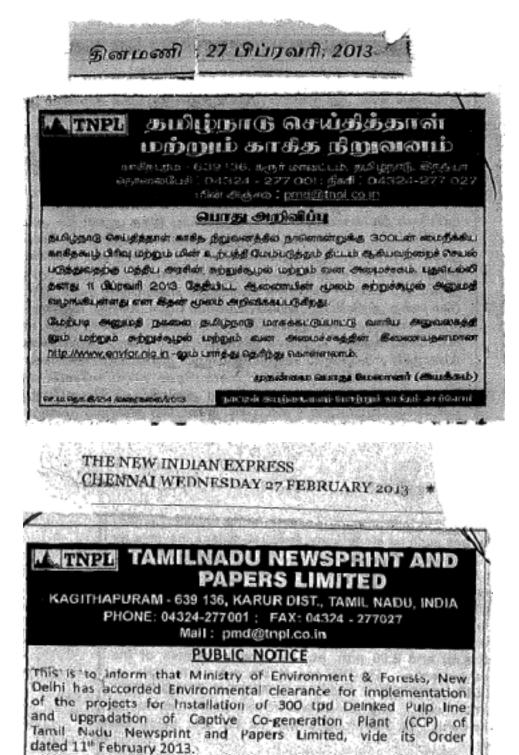
Ref: Environmental Clearance vide F.No.J-11011/710/2007-IA-II (I) dated 11th February 2013

We would like to acknowledge with thanks the receipt of the Environment Clearance for the subject project, vide the orders referred above.

As stipulated in the Clause # xiv of General Conditions of the Order, we have issued a Public Notice on 27th February 2013, in two local newspapers, one in English and the other in Tamil.

A copy of the advertisement is attached for your kind reference and records.

Thanking you,


Yours faithfully for TAMIL NADU NEWSPRINT AND PAPERS LIMITED

Cher 2

ASST. GENERAL MANAGER (PROJECTS)

End: a.a

 $\mathcal{O}^{|k|}$

Copies of the clearance letter are available with the Tamil Nadu State Pollution Control Board and may also be seen at the Website of the Ministry of Environment and Forests at http://www.envfor.nic.in.

CHIEF GENERAL MANAGER (OPERATIONS)

DIPR/214/Display/2013 TNPL - Maker of bagasse based eco-friendly Pape

ANNEXURE XXII

LATEST NABL ACCREDITED & MoEF&CC RECOGNIZED THIRD PARTY LAB - H₂S AND MERCAPTANS REPORT

www.ctllabs.in

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	CTL/CH/N-38332/2023-24 & 03.04.2024
Sample Number	N-38332/23-24
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],
Address	Kagithapuram - 639 136,
	Karur District, Tamil Nadu.
Sample Drawn by	Laboratory
Sample Name	Indoor Air Quality
Sample Description	Non Condensable Gas Emission
Sampling Location	Paper Machine
GPS Reading	11°03'37.409''N & 77°59'37.216''E
Sample Drawn on	26.03.2024
Sample Received on	29.03.2024
Sampling Plan & Procedure	CTL/QSP/F-89 & CTL/SOP/AIR/024
Sample Quantity	1 No
Equipment used for Sampling	Handy Sampler 897 -DTI-2018
Analysis Started on	29.03.2024
Analysis Completed on	03.04.2024
Test Results:	

<u>Test Results:</u>

The above sample tested as received, and results are as follows:

SL.NO	PARAMETER	METHOD	UNIT	RESULT	LIMIT
1	HYDROGEN SULPHIDE	IS 5182 PART 07 - 2021	mg/m ³	BDL(DL:0.006)	Max. 14*
2	MERCAPTANS [#]	Jamesh P.Lodge Method No.118	µg/m ³	BDL(DL:4.0)	-

*As per Factory Act 1948, *Not in NABL Scope BDL - Below Detection Limit(D.L - Detection Limit), Max.-Maximum

END OF REPORT

Verified by

For Chennai Testing Laboratory Pvt Ltd

Authorised Signatory

Page 1 of 1

G. MANIKANDAN Head - Environment Division (CHEMICAL)

Page 1 of

The figure profession is a set to except which a difference of the star destinant performation figures in bound performance of the artiference in according to the set boundary

A - Super 19 | T.V.K. Industrial Estate | Guindy | E-mail : chennaitestinglab@gmail.com Chennai - 600 032 | Tamil Nadu | India | Telefax : +91-44-2250 1757

www.ctllabs.in

CIN: U93000TN2000PTC043869

TEST REPORT

CTL/CH/N-38330/2023-24 & 03.04.2024
N-38330/23-24
M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],
Kagithapuram - 639 136,
Karur District, Tamil Nadu.
Laboratory
Indoor Air Quality
Non Condensable Gas Emission
Hardwood
11°03'25.626''N & 77°59'35.871''E
26.03.2024
29.03.2024
CTL/QSP/F-89 & CTL/SOP/AIR/024
1 No
Handy Sampler 826 -DTL-2016
29.03.2024
03.04.2024

<u>st Results:</u>

The above sample tested as received, and results are as follows:

SL.NO	PARAMETER	METHOD	UNIT	RESULT	LIMIT
1	HYDROGEN SULPHIDE	IS 5182 PART 07 - 2021	mg/m ³	BDL(DL:0.006)	Max. 14*
2	MERCAPTANS [#]	Jamesh P.Lodge Method No.118	$\mu g/m^3$	BDL(DL:4.0)	-

*As per Factory Act 1948, *Not in NABL Scope BDL - Below Detection Limit(D.L - Detection Limit), Max.-Maximum

END OF REPORT

Verified by

For Chennai Testing Laboratory Pvt Ltd

- 4 = Authorised Signatory G. MANIKANDAN

Page 1 of 1

Head - Environment Division (CHEMICAL)

The Report phale net be used to except, whittee used for your metamore period The Agent & board pright sets are if the addresses is proved in the conduction

A - Super 19 | T.V.K. Industrial Estate | Guindy | E-mail : chennaltestinglab@gmail.com Chennal - 600 032 | Tamil Nadu | India | Telefax : +91-44-2250 1757

www.ctllabs.in

CIN: U93000TN2000PTC043869

TEST REPORT

Test Report No & Date	CTL/CH/N-38331/2023-24 & 03.04.2024
Sample Number	N-38331/23-24
Name of the Customer	M/S. TAMIL NADU NEWSPRINT AND PAPERS LIMITED [MAIN PLANT],
Address	Kagithapuram - 639 136,
	Karur District, Tamil Nadu.
Sample Drawn by	Laboratory
Sample Name	Indoor Air Quality
Sample Description	Non Condensable Gas Emission
Sampling Location	Soda Recovery Plant
GPS Reading	11°03'16.558''N & 77°59'45.078''E
Sample Drawn on	26.03.2024
Sample Received on	29.03.2024
Sampling Plan & Procedure	CTL/QSP/F-89 & CTL/SOP/AIR/024
Sample Quantity	1 No
Equipment used for Sampling	Handy Sampler 890 -DTD-2018
Analysis Started on	29.03.2024
Analysis Completed on	03.04.2024
Test Results:	

<u>Test Results:</u>

The above sample tested as received, and results are as follows:

SL.NO	PARAMETER	METHOD	UNIT	RESULT	LIMIT
1	HYDROGEN SULPHIDE	IS 5182 PART 07 - 2021	mg/m ³	1.11	Max. 14*
2	MERCAPTANS [#]	Jamesh P.Lodge Method No.118	µg/m ³	BDL(DL:4.0)	-

*As per Factory Act 1948, *Not in NABL Scope BDL - Below Detection Limit(D.L - Detection Limit), Max.-Maximum

END OF REPORT

Verified by

For Chennai Testing Laboratory Pvt Ltd

- 8-= Authorised Signatory G. MANIKANDAN Head - Environment Division

Page 1 of 1

(CHEMICAL)

The Branes shall not be used to receipt, whittee used for your metamole party The Agent & beaut pright with out of the addressed is proved whither each beaut

A - Super 19 | T.V.K. Industrial Estate | Guindy | E-mail : chennaltestinglab@gmail.com Chennal - 600 032 | Tamil Nadu | India | Telefax : +91-44-2250 1757

ANNEXURE XXIII MEASURES TAKEN TOWARDS REDUCE TDS

MEASURES TAKEN TOWARDS TDS REDUCTION

- Oxygen delignification and twin roll presses were introduced in both Hardwood and Bagasse pulping street. The twin roll presses are more efficient in washing, and COD carryover in pulp into bleach plant is reduced and so also the TDS. The O₂ delignification reduces the lignin carryover to bleach plant by 30-40%, resulting in corresponding reduction in bleach chemicals and thus equivalent reduction in TDS into effluent from bleach plant.
- Paper machine effluent is being segregated and clarified separately to remove the suspended solids and the clarified water is being used in backwater clarifications replacing treated effluent as a measure to reduce TDS in the treated effluent.
- Recycling of EOP alkaline filtrate in post Oxygen washer in both Hardwood & Chemical Bagasse Pulping operations.
- Introduction of organic peroxide stabilizer in Deinking Pulp bleaching operation resulted in 50% Sodium silicate reduction to achieve equivalent reduction of TDS in the respective effluent stream.
- ▶ Usage of ferrous chloride has been stopped for the treatment of anaerobic effluent in ETP.
- The soft water supplied to Chlorine Di Oxide plant and VAM has been replaced with R.O. water. Similarly, Soft water has been replaced with process water in cooling towers and pulp mills. Further, Filtered water is being used in place of soft water for NIPCO hydraulic system. This has resulted in reduction of soft water generation and regeneration cycle thus paved way for reduction of TDS from the WTP effluent stream.

ANNEXURE XXIV

WATER DRAWAL PERMISSION FROM PWD

|--|

ASSTRACI

Drawal of Water - Karar District - To reduce the drawal of water from 24 Mgd ro 20 Mgd with effect from 1.4.97 and 20 Mgd to 15 Mgd with effect from 1.4.99 from River Cauvery by Tamil Nadu Newspeint and Papers Limited - Orders issued.

PUBLIC WORKS (N2)DEPARTMENT

4.5. G.Q. (N/8) No.455.

For in formation pl. Me

C.M.D.

DATEO: 29.10.2001.

..2.

1.54

3

READ:

- I. G.O.Ms.No.600, PWD, Cated 21,10.98.
 - G.O.Ms.No.328, PWD, cafe4 6.7.2001.
- From the Chairman and Managing Director. Tranil Nadu Newsprint and Papers Ltd., D.O. Lr.No. Waler Royalty/06-91, dated 27.7.2091.
- From the Chief Engineer, W.R.O., Trichy Region Ur. No. B3/1 (445/99) dated 3.9.2001.

ORDER:

In supersession of the orders issued in the G.O. first and second read above, the Government direct that the dotwal of water limit of the Toral Nadu Newsprint and Papers Limited from the River Cauvery be reduced from 24 Mgd. to 20 Mgd, with effect from 1.4.97; and from 20 Mgd, to 26 Mgd, with effect from 1.4.97;

2. The Government also direct that all the penalty claims for not paying higher demond charges for the enhanced quantity which was not drawn by Famil Nadu Newsprint and Papers Lamited with effect from 1.4.97 and 1.4.99 be dropped, as a special case.

3. The Government also direct that the above order should not be quoted as precedent in similar cases.

: 2

(BY ORDER OF THE GOVERNOR)

M. KUTRALINGAM SECRETARY TO GOVERNMENT

The Chairman and Managing Director, Tamil Nadu NewsPrint and Papers Limited, Guindy, Chennal-32.

The Chief Engineer. Water Resources Organisation, Public Works Department, Trichy Region, Trichy-29.

The District Collector, Karur District.

Tο

Copy to: The Finance Department, Chennai-9. The Industries Department, Chennai-9.

/Forwarded/By Order/

SECTION OFFICER

ANNEXURE XXV

COMPLIANCE TO MEP PUBLIC HEARING

PUBLIC HEARING UPDATE (HELD ON 10TH JULY 2008)

The environmental public hearing meeting was held on 10-07-2008 at meeting hall, District Collectors Office, Karur, in connection with the Mill expansion Plan of M/s. Tamil Nadu Newsprint And Papers Limited for increasing the production of printing and writing paper. An updated of the Public hearing and compliance to the Public consultation is furnished below:

Compliance to Public Consultation

The representations made by the public can be classified into the following groups:

- i. Airborne Emissions
- ii. Climate Change
- iii. Community Welfare
- iv. Drinking Water Supply
- v. Dust Emission
- vi. Employment in TNPL for Land givers
- vii. Free Project Work for Students
- viii. Groundwater Quality
- ix. Soil Sampling to be taken in land owner's presence
- x. Road Improvements
- xi. Discharge of seepage water into Pugalur Canal
- xii. Land of 2.5 Acres in Moorthipalayam
- xiii. Effluent Sludge Incineration
- xiv. Compliance of Swamy Committee Recommendations

The following explanation addresses these representations.

1 Airborne Emissions

In the EIA, model simulations have been carried using the hourly Joint Frequency data viz. stability, wind speed, mixing height and temperature. For the short-term simulations, the Ground Level Concentrations (GLCs) were estimated

around 1200 receptors to obtain an optimum description of variations in GLCs over the site within 10-km radius covering 16 directions.

The GLCs due to the emission from the proposed stacks have been estimated through dispersion modelling by using the seasonal meteorological data monitored at site. The concentrations for SPM, SO_2 and NOx thus obtained are presented in Table 1. For each time scale, i.e. for 24 hr (short term), the model computes the highest concentrations observed during the period over all the measurement points.

TABLE 1 PREDICTED 24-HOURLY SHORT TERM CONCENTRATIONS

Scenario of Operation	Net Incremental concentrations (µg/m ³)			Distance (km)	Direction
	SPM SO ₂ NOx				
Scenario-1 (Post MDP)	(-) 0.9	4.0	(-)1.4	2.8	NW
Scenario-2 (Post MEP)	0.9	11.0	3.2	1.4	NW

Comments on Predicted Concentrations

A perusal of Table 1 reveals that the maximum short-term 24 hourly ground level incremental concentrations for SPM, SO₂ and NOx are observed as 0.9 μ g/m³, 11.0 μ g/m³ and 3.2 μ g/m³ occurring at a distance of about 1.4 km in the NW direction due to implementation of MEP Project.

Resultant Concentrations after Implementation of the Project

The maximum net incremental GLCs due to the MEP for SO_2 and SPM are superimposed on the baseline SO_2 and SPM concentrations recorded during the study to arrive at the realistic baseline concentrations for the proposed MEP project. The modelling predictions are tabulated below in Table 2.

TABLE 2 RESULTANT CONCENTRATIONS DUE TO INCREMENTAL GLC's – PROPOSED MEP

Pollutant	Realistic baseline concentrations (µg/m ³)	Net incremental concentrations due to MEP (µg/m ³)	Final Resultant Concentrations (µg/m ³)	
	Industri	al Zone		
SPM	189.9	0.9	190.8	
SO ₂	30.8	11.0	41.8	
NOx	27.7	3.2	30.9	
Residential Zone				
SPM	179.2	0.3	179.5	
SO ₂	25.8	3.1	28.7	
NOx	26.4	0.7	31.0	

A perusal of the above table clearly reveals that SPM, SO_2 and NOx are expected to be within the prescribed limits specified by CPCB for industrial zone and residential zone.

2 Climate Change

Concerns expressed about climate changes (rise in temperature and decrease in rainfall) are not related to the operations of TNPL.

3 Community Welfare

The company has been implementing several community welfare measures for the benefit of the people in the neighbourhood. Community welfare measures implemented include:

- > Setting up a Centre for Career Development,
- Establishing training centres for imparting training in Typewriting, Computers and Tailoring to unemployed educated youth in the neighbourhood,
- Providing infrastructure facilities in the government schools in the neighbouring villages,
- Providing infrastructure facilities in the surrounding Primary Health Canters, Government Hospital and Constructing Community Hall, Library, Toilet, etc.,
- Distributing books, note books including providing financial assistance for poor children pursuing studies,
- Organizing monthly medical camps and special medical camps financial assistance for developing roads,
- Providing drinking water facilities and streetlights in the near by villages, conducting veterinary camps, etc.

The company is committed to provide welfare measures to the local community under its Corporate Social Responsibility programme. The community welfare measures will continue to be carried out in tune with the emerging, and genuine, needs of the community.

4 Drinking Water Supply

TNPL is regularly supplying the drinking water to the surrounding villages to the tune of 2000KLD. TNPL has so far provided about 200 common taps in the nearby villages for drinking water. The number will be increased further depending on the actual requirement. Protected water is supplied from the factory through pipelines to the respective overhead tanks. Further, 16 water

tubs are provided for feeding cattles. Pumping of drinking water is done twice a day.

Further, based on the requirement by the nearby hamlets, drinking water is also being supplied through water tankers during festivals etc. in addition to the regular water supply.

5 Dust Emission

In order to control dust emission, wind barriers were provided for a length of 2254 meters along the compound wall of Main Plant including recently installed wind barriers adjacent to compound wall on southern side of the mill for a length of 100 meters to avoid emanation of dust from lime storage. Further, wind barricades for a total length of 1260 meters were already embedded along the compound wall of Cement plant.

6 Employment in TNPL for Land givers

During 1982-83, TNPL acquired 786 acres of land from 362 families for setting up the plant. The company evolved the following criteria for considering the requests received for employment under Land Given Category:

- The land should have been the only or major source of sustenance on the date of passing the Award.
- One employment for one family. Patta in the name of husband and wife to be considered as one family and only one employment to be given to the family.
- Minimum land acquired to be not less than 20 cents.
- Eligible persons will be owner of the land (husband / wife), son daughter, legally adopted son prior to the issue of 4(1) Notification, grandson, grand daughter, son-in-law / grand son-in-law, if there are no male issues.
- Age Limit: 18 to 35 years; Age limit will be relaxed by 5 years for SC/ST candidates.
- Educational Qualification: Minimum 10th Standard / SSLC Pass

Till 2008, the company had provided employment to 193 persons. Conditions 5 & 6 above were relaxed during 2009 and employment was provided to 25 persons including 6 persons relaxing the condition on age and educational qualifications.

With this, 218 persons had been provided employment under land given category.

The Board resolved to close the scheme on 30/11/2009.

However, there are continuous representations to consider employment for the legal heirs of the land owners. In the Public Hearing Meeting, the issue of providing employment under land given category was raised. Hence, it was

decided to provide employment to eligible persons from the applications received from the legal heirs of land owners.

Based on their requests, it was proposed to relax the minimum requirement of 20 cents to 10 cents and to provide employment for daughters-in-laws / grand daughters-in-laws subject to the condition that no one from the family has been provided employment so far in the respective families.

The subject was placed before the Board of Directors of the company in the 220th Meeting held on 29th May 2012. The Board approved the proposal for providing employment to the eligible legal heirs and it was also resolved to close the scheme forthwith.

Out of the representations, 29 persons were found eligible to be provided employment and after conducting interviews, 19 persons have been provided employment. Few persons have declined the proposal of accepting the offer and few persons are yet to produce relevant documents in respect of land acquired, educational qualifications, no objection certificates from other legal heirs etc. Once the compliance is fulfilled, interview process in respect of the remaining persons will be completed shortly and those persons will be inducted.

The above action also fulfils the representation of Mr K Murugan, Velayuthampalayam, during the Public hearing. As requested by Mr Murugan, his legal heir (son), a qualified engineer has been inducted in TNPL service from August 2009.

SI No	Description	Total Nos. of employment given
1	Employment given in Unit - I	240
2	Employment given in Unit - II (as on 23.11.2019)	98
	Total	338

So far, the total employment given for land given category is summarized below:

7 Free Project Work for Students

The system of charging a nominal fee was introduced, to regulate the number of students doing the project work within the factory complex and ensure safe factory operations. However, in response to the public hearing, project work is being allocated to students on free of cost. The details of the in plant training/ Project work undertaken by the students in TNPL between Apr'19 and Sep'19 is given below:

INPLANT TRAINING / PROJECT WORK DETAILS FOR THE PERIOD FROM APRIL 2019 TO NOVEMBER 2019

SI. No.	Subject Field	In-plant Training	Internship / Project Work	Total Students benefited
1	МВА	12	35	47
2	Electrical and Electronics Engineering	64	46	110
3	Electronics and		40	74
4	Mechanical Engineering	70	150	220
5	Information Tech./ Computer Science and Engg.	9	0	9
6	6 Chemical Engineering		16	36
7	Electronics and Communication Engineering	10	35	45
8	Civil Engg.	7	0	7
9	Chemistry	28	16	44
10	Others	13	21	34
Total		267	359	626

8 Ground Water Quality

Most of the villages in the project area have bore wells and tube wells for agricultural purposes.

The results of the water analysis, from three randomly selected bore wells, indicate that the pH and fluorides are well within the permissible limits. The bacterial studies also confirm that, no coliform bacteria have been present in the samples. The heavy metal is, either very low or, below detectable limits.

With the implementation of MDP and MEP, the treated wastewater quality has improved in terms of TDS, AOx, sodium and chlorides due to implementation of systems such as oxygen delignification, elemental chlorine free bleaching etc. and also tighter spillage control.

9 Soil Sampling to be taken in land owner's presence

Tamil Nadu Agricultural University is carrying out periodical sampling in twenty benchmark sites. This sampling is carried out once in six months by an Assistant Professor and research associates from Department of Environmental Science of Tamil Nadu Agricultural University, Coimbatore (TNAU), in the presence of concerned land owners.

10 Road Improvements

Against the demand for the widening of Moolimangalam Road during public hear for easy movement of trucks carrying Baggasse , TNPL had completed the work with the support of Highways department. Now the road has sufficient width for free movement vehicles.

11 Discharge of Seepage-water into Pugalur Canal

Presently, treated effluent is used for irrigating an area of 1600 Acres of land through M/s TNPL Effluent Water Lift Irrigation Society (TEWLIS), formed and run by the farmers. The seepage water quantity has been reduced to minimum level, consequent to reduction in the waste water being discharged and utilised for irrigation. In the recent Public hearing for the DIP project also, there was no point raised by the Public, on the seepage water.

12 Land of 2.5 Acres in Moorthipalayam

With reference to Point 17 of the Public hearing, as of date, TNPL has cleared the site and planted Eucalyptus trees during 2009-10, after preparation of the surface and filling with earth. This matter was communicated to the District Collector by TNPL, vide letter dated 5th April 2010.

13 Compliance to Justice Swamy Committee Recommendations

The latest status of compliance to the recommendations is follows:

STATUS OF COMPLIANCE AGAINST THE JUSTICE SWAMY COMMITTEE

RECOMMENDATIONS

SI.No	RECOMMENDATION	STATUS OF COMPLIANCE
1	By adopting Biomethanation technology in place of anaerobic lagoon, not only the parameters of the polluted contents are reduced substantially but also the bioenergy produced will repay the cost of Biomethanation plant in a course of 5 to 6 years. Therefore, the Committee strongly recommends the adoption of the Biomethanation technology within a period of two years for high BOD stream.	TNPL has commissioned the Bio Methanation Plant for high BOD/COD stream of Effluent Treatment Plant at a cost of Rs.430 lakh during June 2003 and is successfully operating the plant. The biogas produced is utilized in lime kiln regularly since June 2003. The Bio Plants installed generates a about 25000 CU.M/day of Bio gas resulting in 15000 Liters/day saving of furnace oil consumption in Lime Kilns.
2	Colour is one parameter of major concern. The Committee recommends the following measures for reduction of colour in the effluent which are to be adopted and implemented within a period of six (6) months: (a) Chemical precipitation technique using Alum.	The unit has implemented tertiary treatment to reduce colour in the treated effluent by Ozonization at a capital outlay of Rs.400 lakhs (Rs.200 for Ozonization and Rs. 200 of Oxygen feed plant). The unit was commissioned on 06 th August 2010 and is in service. The operating expenditure of ozonation plant is about Rs.70 lakh per annum. In addition to colour reduction in the final treated effluent, the ozonation will further improve dissolved oxygen in the treated effluent.
	 (b) Introduction of peroxide in extraction stage of bleaching process for chemical pulp. (c) Improvement in efficiency of the pulp washing system reduces colour, sodium and dissolved solids in the effluent. TNPL must assess the techno-economic feasibility of the new generation of pulp washing systems discussed in Chapter-VI for washing of bagasse pulps. 	Peroxide is used on a regular basis in extraction stage of bleaching process for chemical pulp. Under MDP, this hardwood pulping line has been replaced by a new ECF hardwood pulp mill, which includes modern twin roll press for efficient washing. In Chemical Bagasse Pulp Line, the brown stock washers were replaced with 'ripple deck washers' which gives improved consistency and efficient washing. This Chemical Bagasse Washing line was also replaced by a modern twin roll press for efficient washing with oxygen delignification Mill Expansion Plan.
3	The Committee directed TNPL to install a Pilot Plant for removal of colour by employing Membrane Filtration Technology. The results of the Membrane Filtration Pilot Plant installed on lease from the Central Pulp &	TNPL has carried out trials with membrane filtration technology in June 2000 for effluent stream like Decker filter, Extraction Filtrates & Foul condensate. It was found that the technology is not viable for Paper and Pulp

SI.No	RECOMMENDATION	STATUS OF COMPLIANCE
	Paper Research Institute, Saharanpur (U.P.) being encouraging, the Committee recommends that the feasibility of this	industry and there was no guarantee for the life of membrane from the supplier.
	technology on a commercial scale should established within a period of one year. Based on such assessment further steps should be taken for adoption or otherwise of the Membrane Filtration Plant as a time	TNPL has installed Oxygen Delignification and ECF bleaching for hardwood pulping line and ECF bleaching for Chemical Bagasse pulping line to reduce the colour level at source.
	bound programme.	The unit has implemented tertiary treatment to reduce colour in the treated effluent by Ozonation at a capital outlay of Rs.400 lakhs (Rs.200 for Ozonization and Rs.200 of Oxygen feed plant). The unit was commissioned on 06th August 2010 and is in service.
		The operating expenditure is about Rs.70lakh per annum. In addition to colour reduction in the final treated effluent, the ozonation will further improve dissolved oxygen in the treated effluent.
4	Present fresh water consumption is 125 cubic meter per tonne of paper. There is a scope for further reduction by 10% in the intake of present quantity of the fresh water.	TNPL has implemented various conservation measures, as a continuous process, to reduce water consumption.
		The present average fresh water consumption is 28 m ³ /tonne of paper production for the period Apr'23 to Mar'24.
5	There is an urgent need to take all the measures to stop the leakage of Oil & Grease from the process equipments and to prevent entering into effluent streams. Steps in this regard should be taken within a period of six months.	The average Oil & grease concentration in TNPL's final treated effluent outlet is below 2.0 mg/l as against 10 mg/l prescribed by TNPCB. TNPL has installed a separate treatment plant for separation of oil & grease in the automobiles servicing section.
6	Effluent quality should be improved to such an extent that it is not only suitable for irrigation but also for any non-process application. Attempts should be made to reduce the level of sodium and dissolved solids particularly the inorganic chlorides. This should be taken up on priority basis as one of the R&D programmes.	TNPL is treating its effluent through Activated sludge process for effective reduction of pollutants. The total operating cost of treatment of effluent including power and chemicals is about Rs.900 lakh per annum. The present average fresh water consumption is 28 m ³ /tonne of finished paper production for
		the period Apr'23 to Mar'24. Average TDS(Inorganic): 2040 mg/l.
7	The modern trend in bleaching of chemical pulp in Pulp & Paper Industry is towards Elemental Chlorine Free Bleaching (ECF) and Total Chlorine Free Bleaching (TCF). However	Under the Mill Development Plan, TNPL has commissioned a 300 tpd ECF chemical hard wood pulp line and a 500 tpd ECF chemical bagasse bleach plant by May 2008. The
		Page 10 of 13

SI.No	RECOMMENDATION	STATUS OF COMPLIANCE
	since company had adopted CEHH bleaching while expanding the plant capacity fully only in 1996, as far as the adoption of ECF technology is concerned, the Committee recommends that it should be adopted by the year 2010. The Committee also would like to add that an ideal situation would be, adoption of TCF bleaching, even though, it is costlier compared to ECF. But in the course of 10 to 11 years, if TCF technology or any other technology becomes viable and is better than ECF, the same should be adopted.	company has complied with this recommendation, two years ahead of the target date of March 2010 in replacement of the chlorine based bleach plants. ECF is recognized as Best Available Technology worldwide.
8	One of the major consequences of land application of the effluent is seepage and contamination of sub soil water. One possible solution is by way of more efficient transport of the effluent through channel or pipelines and pumping off water from water logged areas. TNPL should have a separate establishment to take care of the same.	TNPL treated effluent water is transported to the irrigated lands through pipelines. The seepage water from the TEWLIS ayacut is also collected into a separate channel and the same is diverted to the existing TEWLIS sump and used for irrigation along with treated effluent. The operation of TEWLIS system is being monitored by CGM (Operations – I/c) assisted by a team of operational and maintenance Engineers.
9	One more problem connected with the land application of treated effluent is the supply of drinking water. TNPL at present supplies drinking water to the surrounding areas. The supply of drinking water should be augmented within a period of six months so as to adequately meet the requirement of the residents in the neighborhood of the paper mill.	TNPL has increased the drinking water supply to the surrounding villages from 2000 m ³ /day. TNPL has provided common taps in the nearby villages for drinking water and steadily increased to 235 nos as on date. Number of taps will be increased further depending on the actual requirement. Further, protected water is supplied from the factory through pipelines to the overhead tanks of the nearby villages.
10	Discharging of treated effluent water and seepage water into Pugalur Canal should be stopped at any rate within a period of two years. Steps taken for enlarging TEWLIS area and development of additional area for utilization of treated effluent and seepage water should be accomplished within a year.	Discharge of treated effluent water and seepage water into Pugalur Canal has been stopped completely. The quality of treated effluent is within the norms prescribed by the TNPC Board.
11	TNPL should have a continuing programme to modernize the operations and to remove obsolescence and adopt the best available technology.	 TNPL has taken steps to implement the following measures: 1) There are three No of Biogas plant are under operations which are generated about 25000 CU.M/day resulting in 15000 Liters saving of furnace oil consumption in Lime Kilns.

RECOMMENDATION	STATUS OF COMPLIANCE
	2) Fresh water reduction by recycling treated effluent water.
	3) Best available technology for both Hardwood Pulp line and Chemical Bagasse Pulp Bleaching has been adopted for energy efficient and environmental friendly operations.
	4) In order to control odour, the unit has installed Non Condensable Gas (NCG) collection and incineration system in the lime-kiln at a cost of Rs.500 Lakhs.
Research and Development Programmes: TNPL should have an exclusive Research and Development (R&D) Wing with upgraded	TNPL has an exclusive R&D Wing and also has a well equipped Laboratory facility.
Laboratory facilities to enable the mill to develop, assess and adopt state-of art technology. The R&D wing should also evaluate and	Based on the R&D trials, TNPL has installed bio-methanation plant, Oxygen delignification, ECF bleaching, Alkaline sizing, use of environmental friendly pigment dyes etc.
technologies available in Research institutions. The standard analytical procedures for analysis and measurement of pollution parameters as recommended by	TNPL maintains association with Research Institutes like CPPRI, CLRI etc and utilizes their resources, whenever necessary. Standard analytical procedures as per BIS for pollution parameters are adopted and
followed.	international standards like TAPPI ISO Scan etc are used for pulp and paper properties.
It is necessary to have periodic environmental impact assessment (EIA) atleast once in five years and the same	EIA study was carried out by NEERI during 2001-02. SPB-PC carried out EIA during 2004-05 as part of MDP.
NEERI or any other such Institution. The findings should be given due publicity. In the first half of the year 2001, EIA should be got done by NEERI.	The study has been updated during January 2008 as part of MEP and further updated during October '2008 after public hearing. Further, EIA has been carried out during Jan'12 towards implementation DIP and augmentation of CCP through SPB-PC. Further, as part of Cement plant expansion, EIA study was carried out during 2015.
	The plant is being operated with less than the design capacity. In view of the above, the EIA study was not taken up since the study report would not reflect the actual environment impact as the plant is being operating with under capacity. Now, TNPCB, have accorded CTO towards enhancement of production from
	Research and Development Programmes: TNPL should have an exclusive Research and Development (R&D) Wing with upgraded Laboratory facilities to enable the mill to develop, assess and adopt state-of art technology. The R&D wing should also evaluate and recommend for adoption of any readymade technologies available in Research institutions. The standard analytical procedures for analysis and measurement of pollution parameters as recommended by competent agencies such as BIS to be followed. It is necessary to have periodic environmental impact assessment (EIA) atleast once in five years and the same should be got done by expert body like NEERI or any other such Institution. The findings should be given due publicity. In the first half of the year 2001, EIA should be got

SI.No	RECOMMENDATION	STATUS OF COMPLIANCE
		4.0 LakhMTPA to 4.8 Lakh MTPA under No Increase Pollution Load Scenario.
		Hence, it is proposed to conduct EIA study on achieving of enhanced production as per the latest CTO to evaluate incremental Environmental impacts, if any even after enhancement of production.
14	It is also necessary to direct Tamil Nadu Agricultural University (TNAU) to continue to monitor the impact of treated effluent on land and crops. Monitoring must be done once in two years. Steps necessary in accordance with findings recorded by TNAU should be taken up by TNPL.	TNAU is monitoring the TEWLIS area and soil samples are analysed with the help of Agricultural Department. Various steps like application of Gypsum and cultivation of green manure being taken by TNPL as per TNAU's findings. Gypsum was supplied by the company at free of cost to the
		concerned farmers. Further, Study of land use pattern and agricultural activities including collection of data are being collected. The recommendation of TNAU is being implemented in the treated effluent irrigated area.

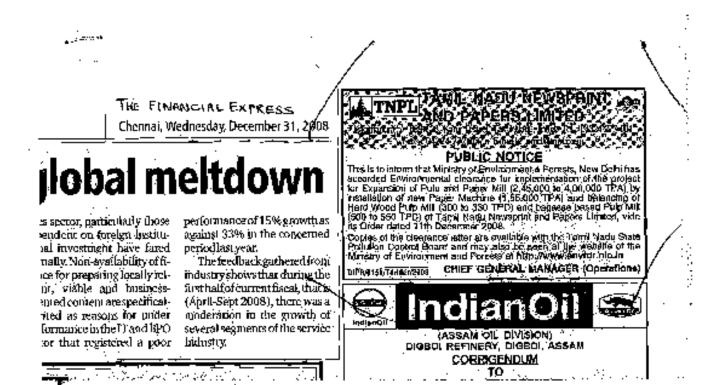
ANNEXURE XXVI

ENVIRONMENTAL MANAGEMENT CELL

TNPL

Tamilnadu Newsprint and Papers Limited.

May 17, 2024


ENVIRONMENTAL MANAGEMENT CELL

SL.NO	NAME OF THE EXECUTIVE	DESIGNATION	QUALIFICATION	RESPONSIBILITY	
01	Mr. Nagarajan, 5	Chief General Manager-(Operations – I/C)	AMIE	Responsible for over all mill wide operations and coordinator for Environment Compliance.	
02	Mr. Rajalingam.R	General Manager (Electrical & Instrumentation)	B.Tech., MBA.,	Responsible for over all Mill wide Electrical & Instrumentation and Online Pollution Control Monitoring Stack Instruments.	
03	Mr. Shamim Ahmed	Deputy General Manager (R&D)	M.Tech	Responsible for R&D, Quality Control and Environment Compliance.	
04	Mr. N. Navaneedhakrishnan	Assistant General Manager (Water Management)	M.Sc.,	Responsible for operation of WTP, ETP, Biogas Plant and TNPL Effluent Water Lift Irrigation Society. (TEWLIS)	
05	Mr. Sundaram. S.M.	Chief Manager (Environment)	M.Sc.,	Evaluation of Environmental Compliance and Coordination with PCB officials and coordinator of ISO 14001.	
PLANTA	TION ACTIVITES				
06	Dr. K. Jayakumar	Deputy General Manager (Forestry)	Doctorate in Agronomy	Responsible for overall pulpwood raw material procurement and Plantation establishment activities.	
07	Dr. P. Chezhian	Chief Manager (Plantation)	Doctorate in tree building and forest genetics	Development of new superior clones in exotic and indigenous pulp wood species for captive and farm forestry of TNPL.	
08	Dr. V. Prasath	Manager (Plantation)	Doctorate in soil science and agricultural chemistry	Monitoring of ground water & soil in TEWLIS in association with TNAU scientists.	

Chief General Manager-(Operations - I/C)

ANNEXURE XXVII

MEP – ENVIRONMENTAL CLEARANCE – NEWSPAPER ADVERTISEMENT

ł,

- Emilent, 49 mark york, 31 4 million, 2008

